Infinite factorials

6 n × 1 1 1 × 2 2 2 × × n n n \sqrt{6n \times \sqrt{1\sqrt{1\sqrt{1\ldots}}} \times \sqrt{2\sqrt{2\sqrt{2\ldots}}} \times \ldots \times \sqrt{n\sqrt{n\sqrt{n\ldots}}} }

For a particular positive value of n n , the expression with infinitely nested radicals above can be simplified to 12 n 12n . What is the value of n n ?

4 12 24 6 16 3 15 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex Delhumeau
May 15, 2015

Start by recognizing that 1 1 1 = 1 , 2 2 2 = 2 , \sqrt{1\sqrt{1\sqrt{1\ldots}}} = 1, \sqrt{2\sqrt{2\sqrt{2\ldots}}} = 2, and so forth because n n n = n \sqrt{n\sqrt{n\sqrt{n\ldots}}} = n . Why? Because....

n n n = n 1 2 n 1 4 n 1 8 = \sqrt{n\sqrt{n\sqrt{n\ldots}}}=n^{\frac{1}{2}} \cdot n^{\frac{1}{4}} \cdot n^{\frac{1}{8}} \cdot \ldots= n i = 1 1 2 i n^{\text{ }\large{\sum\limits_{i=1}^{\infty} \frac{1}{2^i}}} = n 1 n^{1} .

Therefore, 6 n × 1 1 1 × 2 2 2 × × n n n = 6 n ( n ! ) \sqrt{6n \times \sqrt{1\sqrt{1\sqrt{1\ldots}}} \times \sqrt{2\sqrt{2\sqrt{2\ldots}}} \times \ldots \times \sqrt{n\sqrt{n\sqrt{n\ldots}}} } = \sqrt{6n(n!)} .

Because the expression also equals 12 n 12n , squaring both sides gives 144 n 2 = 6 n ( n ! ) 144n^2=6n(n!) . Note that n ! = n ( n 1 ) ! n!=n(n-1)! , so 144 n 2 = 6 n 2 ( n 1 ) ! 144n^2=6n^2(n-1)!

Simplifying gives that ( n 1 ) ! = 24 (n-1)!=24 , so by inspection n = 5 n=\boxed{5} .

let √n√n√.... be 'X' then X = √n√n√.... and X=√nX

nX=X^2 by solving this quadratic we get two values n and 0, neglect 0. similarly the whole function turns to √6n * 1 * 2 * 3 * .. * n=√6n * n!=√6n^2 * (n-1)!=12n on solving we get

6n^2 * (n-1)!=12^2

(n-1)!=24

n=5

Moderator note:

Can you explain why n n n \sqrt{n\sqrt{n\sqrt{n\ldots}}} must converge for all positive integers n n ?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...