Infinite Fibonacci Fractions

Algebra Level 3
  1. Let a/b (where both a and b are positive integers ) equal 1/5+1/25+2/125+...+F(n)/5^n, where F(n) is the nth Fibonacci number, defined by F(1) = F(2) = 1 and F(n)= F(n-1) + F(n-2) for all integers n>2. Find 10a+b.


The answer is 69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nisshith Sharma
Mar 5, 2014

a b = 1 5 + 1 5 2 + 2 5 3 + 3 5 4 + 5 5 5 + 8 5 6 + 13 5 7 . . . . a 5 b = 1 5 2 + 1 5 3 + 2 5 4 + 3 5 5 + 5 5 6 + 8 5 7 . . . . a b a 5 b = 1 5 + 0 + 1 5 3 + 1 5 4 + 2 5 5 + 3 5 6 + 5 5 7 . . . . T h e r e f o r e , a b a 5 b = 1 5 + a 25 b S o l v i n g t h i s w e g e t , a b = 5 19 H e n c e , 10 a + b = 69. \quad \quad \quad \quad \quad \quad \frac { a }{ b } =\quad \frac { 1 }{ 5 } +\frac { 1 }{ { 5 }^{ 2 } } +\frac { 2 }{ { 5 }^{ 3 } } +\frac { 3 }{ { 5 }^{ 4 } } +\frac { 5 }{ { 5 }^{ 5 } } +\frac { 8 }{ { 5 }^{ 6 } } +\frac { 13 }{ { 5 }^{ 7 } } ....\infty \\ \quad \quad \quad \quad \quad \frac { a }{ 5b } =\quad \quad \quad \quad \quad \frac { 1 }{ { 5 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 3 } } +\frac { 2 }{ { 5 }^{ 4 } } +\frac { 3 }{ { 5 }^{ 5 } } +\frac { 5 }{ { 5 }^{ 6 } } +\frac { 8 }{ { 5 }^{ 7 } } ....\infty \\ \\ \frac { a }{ b } -\frac { a }{ 5b } \quad =\quad \frac { 1 }{ 5 } +\quad 0+\frac { 1 }{ { 5 }^{ 3 } } +\frac { 1 }{ { 5 }^{ 4 } } +\frac { 2 }{ { 5 }^{ 5 } } +\frac { 3 }{ { 5 }^{ 6 } } +\frac { 5 }{ { 5 }^{ 7 } } ....\infty \\ Therefore,\\ \frac { a }{ b } -\frac { a }{ 5b } \quad =\quad \frac { 1 }{ 5 } +\quad \frac { a }{ 25b } \\ \\ Solving\quad this\quad we\quad get,\\ \frac { a }{ b } \quad =\quad \frac { 5 }{ 19 } \quad \\ Hence,\quad 10a\quad +\quad b\quad =\quad 69.

wahh,,,,,,,can you teach me ?? please

Quennie Joy - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...