Infinite Nested Radical

Algebra Level 1

1 4 + 3 4 1 4 + 3 4 1 4 + 3 4 = ? \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \cdots } } } }=\, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sravanth C.
Jan 27, 2016

We know that 1 4 + 3 4 = 1 \dfrac 14+\dfrac 34=1 , so this Nested radical will look like this: 1 4 + 3 4 1 4 + 3 4 1 4 + 3 4 = 1 1 1 1 = 1 \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \dots } } } }=\sqrt{1\sqrt{1\sqrt{1\sqrt{1\dots}}}}=\boxed 1

Moderator note:

With such infinite series, you have to show that the limit actually exists, and converges to the value that you found. That is the assumption that you used at the start of this solution.

Very nice!...Did the same way.

A Former Brilliant Member - 5 years, 4 months ago
Kay Xspre
Jan 28, 2016

Let x = 1 4 + 3 4 1 4 + 3 4 1 4 + 3 4 x = \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \cdots } } } }

Using recurrent relation, we will get x = 1 4 + 3 4 x x = \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 }x} , or simply 4 x 2 3 x 1 = 0 4x^2-3x-1 = 0 . Factorizing it gives ( 4 x + 1 ) ( x 1 ) = 0 (4x+1)(x-1) = 0 hence x = 1 4 , 1 x = \frac{-1}{4}, 1 , but as 0 < x 0 < x , hence x = 1 x = 1

Ritik Kumar
Jul 17, 2018

two solns are possible 1 and 1/4

Pranav Bansal
Jan 27, 2016

Let the equation be y.......... since its an infinite series therefor addition or subtraction of some terms would not affect the sum of series. Therefor............. Y=√{1/4 + 3/4Y}............now.... Y^2 = 1/4 + 3/4Y.........now........ 4Y^2 -3Y -1 = 0............ Hence roots of eq. are -2/3 and -1/6 Since sum of positive no cannot be negative Therefor ans = 2/3 ~1.

@Pranav Bansal Your answer to this problem is flawed, can you explain it? How did you approximate 2 3 \dfrac 23 to 1 1 ?

Sravanth C. - 5 years, 4 months ago
Z Xy
Jan 27, 2016

let a = 1 4 + 3 4 1 4 + 3 4 1 4 + 3 4 a=\sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \frac { 1 }{ 4 } +\frac { 3 }{ 4 } \sqrt { \dots } } } }

so a = ( 1 4 + 3 4 ) a a 2 = ( 1 4 + 3 4 ) 4 × a 2 3 a 1 = 0 ( 4 a + 1 ) ( a 1 ) = 0 a=\sqrt{\left(\dfrac 14+\dfrac 34\right)a}\\a^2=\left(\dfrac 14+\dfrac 34\right)\\4\times a^2-3a-1=0\quad \implies(4a+1)(a-1)=0

and a > 0 a>0 , so a = 1 \boxed{a=1}


[Edits - Moderator]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...