Infinite Geometric Series

Algebra Level 3

a b + a b 2 + a b 3 + = 4 \frac{a}{b}+\frac{a}{b^{2}}+\frac{a}{b^{3}}+\ldots = 4

a a + b + a ( a + b ) 2 + a ( a + b ) 3 + = ? \frac{a}{a+b}+\frac{a}{(a+b)^{2}}+\frac{a}{(a+b)^{3}}+\ldots = \ ?


The answer is 0.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Anonymous Person
Oct 23, 2014

Let the answer to the question be represented by x x :

  • 1st Series:

a / b + a / b 2 + a / b 3 . . . = 4 a/b + a/b^2 + a/b^3... = 4\equiv

1 / b ( a + a / b + a / b 2 . . . ) = 4 \equiv 1/b (a + a/b + a/b^2...) = 4\equiv

1 / b ( a + 4 ) = 4 \equiv 1/b (a + 4) = 4\equiv

a / b + 4 / b = 4 \equiv a/b + 4/b = 4\equiv

a + 4 = 4 b \equiv a + 4 = 4b\equiv

a = 4 b 4 \equiv a = 4b - 4

  • 2nd Series:

a / ( a + b ) + a / ( a + b ) 2 + a / ( a + b ) 3 . . . = x a/(a + b) + a/(a + b)^2 + a/(a + b)^3... = x\equiv

1 / ( a + b ) ( a + a / ( a + b ) + a / ( a + b ) 2 . . . ) = x \equiv 1/(a+b) (a + a/(a + b) + a/(a + b)^2...) = x\equiv

1 / ( a + b ) ( a + x ) = x \equiv 1/(a+b) (a + x) = x\equiv

a + x = ( a + b ) x \equiv a + x = (a+b)x\equiv

a + x = a x + b x \equiv a + x = ax + bx\equiv

  • ( Substitution of a a with 4 b 4 4b - 4 )

4 b 4 + x = ( 4 b 4 ) x + b x \equiv 4b - 4 + x = (4b - 4)x + bx\equiv

4 b 4 + x = 4 b x 4 x + b x \equiv 4b - 4 + x = 4bx - 4x + bx\equiv

5 x 5 b x = 4 4 b \equiv 5x - 5bx = 4 - 4b\equiv

5 x ( 1 b ) = 4 ( 1 b ) \equiv 5x(1 - b) = 4(1 - b)\equiv

5 x = 4 \equiv 5x = 4\equiv

x = 0.8 \equiv\boxed{x = 0.8}

Aadi Naik
Nov 3, 2014

Sum of infinite geometric progression is a/(1-r)... So we get in first case a/(b-1)=4 ie a/4=b-1 In second case, we get sum=a/(a+b-1)=4a/5a=0.8

In first case it's a/(1-b)=4

Anurag Gumidelli - 3 years, 11 months ago
Aaaaa Bbbbb
Oct 22, 2014

( a / b ) ( 1 + 1 / b + . . . ) = ( a / b ) ( 1 / ( 1 1 / b ) ) = a / ( b 1 ) = 4 (a/b)(1+1/b+...)=(a/b)*(1/(1-1/b))=a/(b-1)=4 a = 4 ( b 1 ) a=4(b-1) ( a / ( a + b ) ) ( 1 / ( 1 1 / ( a + b ) ) ) = a / ( a + b 1 ) (a/(a+b))(1/(1-1/(a+b)))=a/(a+b-1) 4 ( b 1 ) / ( 4 ( b 1 ) + b 1 ) 4(b-1)/(4(b-1)+b-1) a n s = 4 / 5 = 0.8 ans=4/5=\boxed{0.8}

Nice solution, indeed. I haven't studied geometric series so far, so my solution is far longer.

Anonymous Person - 6 years, 7 months ago

Log in to reply

Did your solution go something like this:

1:

S = a b + 1 b ( a b ) + 1 b 2 ( a b ) . . . = 4 S=\frac { a }{ b } +\frac { 1 }{ b } (\frac { a }{ b } )+\frac { 1 }{ { b }^{ 2 } } (\frac { a }{ b } )...=4

S a b = 1 b S , 4 a b = 4 b , a b = 4 4 b , a = 4 b 4 \quad S-\frac { a }{ b } =\frac { 1 }{ b } S,\quad 4-\frac { a }{ b } =\frac { 4 }{ b } ,\quad \frac { a }{ b } =4-\frac { 4 }{ b } ,\quad a=4b-4

2:

S = a a + b + a ( a + b ) 2 + a ( a + b ) 3 . . . S=\frac { a }{ a+b } +\frac { a }{ { (a+b) }^{ 2 } } +\frac { a }{ { (a+b) }^{ 3 } } ...

S a a + b = 1 a + b S , ( 1 1 a + b ) S = a a + b , S = a a + b 1 S-\frac { a }{ a+b } =\frac { 1 }{ a+b } S,\quad (1-\frac { 1 }{ a+b } )S=\frac { a }{ a+b } ,\quad S=\frac { a }{ a+b-1 }

Finally: as a=4b-4, b=(a+4)/4

S = a a + a + 4 4 1 , S = a a + 0.25 a + 1 1 , S = a 1.25 a , \quad S=\frac { a }{ a+\frac { a+4 }{ 4 } -1 } ,\quad S=\frac { a }{ a+0.25a+1-1 } ,\quad S=\frac { a }{ 1.25a } ,

S = 1 1.25 , S = 1 5 4 , [ S = 4 5 ] \quad S=\frac { 1 }{ 1.25 } ,\quad S=\frac { 1 }{ \frac { 5 }{ 4 } } ,\quad \left[ S=\frac { 4 }{ 5 } \right]

Hence S=0.8 :)

David Baker - 6 years, 7 months ago
Daniel Heiß
Aug 21, 2016

With geometric series one get by the first series: i = 1 a b i = a ( i = 0 ( 1 b ) i 1 ) = a ( 1 1 1 b 1 ) = a b 1 = 4. \sum_{i=1}^\infty\frac a{b^i}= a\cdot\left(\sum_{i=0}^\infty\left(\frac1b\right)^i-1\right) = a\cdot\left(\frac{1}{1-\frac1b}-1\right)=\frac{a}{b-1}=4. So we get a = 4 b 4 a=4b-4 .

Let x x denote the value of the second series. Apply the same arguments as for the first series and we get x = a a + b 1 = 4 b 4 4 b 4 + b 1 = 4 ( b 1 ) 5 ( b 1 ) = 4 5 = 0.8 . x=\frac{a}{a+b-1}=\frac{4b-4}{4b-4+b-1}=\frac{4(b-1)}{5(b-1)}=\frac45=\boxed{0.8}.

Paul Patawaran
Apr 30, 2020

a b \frac{a}{b} + a b 2 \frac{a}{b^2} + a b 3 \frac{a}{b^3} + ... = a b 1 \frac{a}{b-1}

a b 1 \frac{a}{b-1} = 4

a a + b \frac{a}{a+b} + a ( a + b ) 2 \frac{a}{(a+b)^2} + a ( a + b ) 3 \frac{a}{(a+b)^3} + ... = a a + b 1 \frac{a}{a+b-1} = a a + b 1 \frac{a}{a+b-1}

For a b 1 \frac{a}{b-1} = 4, reciprocal and add 4 on both sides to get

a + b 1 a \frac{a+b-1}{a} = 5 4 \frac{5}{4}

And finally reciprocal this to get the desired sum a a + b 1 \frac{a}{a+b-1} = 4 5 \frac{4}{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...