Infinite? INFINITE!

Calculus Level 2

1 + 2 1 + 3 1 + 4 1 + 5 1 + = ? \sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5\sqrt{1+\cdots}}}}} = ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ramanujan discovered in 1911 that:

x + n + a = a x + ( n + a ) 2 + x a ( x + n ) + ( n + a ) 2 + ( x + n ) a ( x + 2 n ) + ( n + a ) 2 + ( x + 2 n ) x+n+a = \sqrt{ax+(n+a)^2+x\sqrt{a(x+n)+(n+a)^2+(x+n)\sqrt{a(x+2n)+(n+a)^2+(x+2n)\sqrt \cdots}}}

Putting x = 2 x=2 , n = 1 n=1 , and a = 0 a=0 , we have:

2 + 1 + 0 = 1 + 2 1 + 3 1 + 4 1 + 5 1 + 2+1+0 = \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}}

Therefore, the answer is 3 \boxed 3 .


Proof: Let f ( x ) = 1 + x f(x) = 1+x . Then f ( x ) = ( 1 + x ) 2 = 1 + 2 x + x 2 = 1 + x ( 2 + x ) = 1 + x f ( x + 1 ) f(x) = \sqrt{(1+x)^2} = \sqrt{1+2x + x^2} = \sqrt{1+x(2+x)} = \sqrt{1+xf(x+1)} . Similarly, f ( x + 1 ) = 1 + ( x + 1 ) f ( x + 2 ) f(x+1) = \sqrt{1+(x+1)f(x+2)} , f ( x + 2 ) = 1 + ( x + 2 ) f ( x + 3 ) f(x+2) = \sqrt{1+(x+2)f(x+3)} and so on. Then we have:

x + 1 = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + For x = 2 3 = 1 + 2 1 + 3 1 + 4 1 + 5 1 + \begin{aligned} x+1 & = \sqrt{1 + x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+\cdots}}}}} & \small \color{#3D99F6} \text{For }x = 2 \\ \implies 3 & = \sqrt{1 + 2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}} \end{aligned}

But how do we PROVE it, comrade? ;)

Otto Bretscher - 2 years, 7 months ago

Log in to reply

Thanks for the challenge. Solve it.

Chew-Seong Cheong - 2 years, 7 months ago

How is it equal to 3 + 4 + 5 + 6 + 7 + = 3 \sqrt { 3 + \sqrt { 4 + \sqrt { 5 + \sqrt { 6 + \sqrt { 7 + \cdots } } } } } = 3 ?

I cannot understand it.

. . - 3 months, 3 weeks ago

Log in to reply

But 1 + 2 1 + 3 1 + 4 1 + 5 1 + \sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5\sqrt{1+\cdots}}}}} is not equal to 3 + 4 + 5 + 6 + 7 + \sqrt { 3 + \sqrt { 4 + \sqrt { 5 + \sqrt { 6 + \sqrt { 7 + \cdots } } } } }

Chew-Seong Cheong - 3 months, 3 weeks ago

Oh, it is the biggest mistake of mine.

. . - 3 months, 3 weeks ago

Then 3 4 5 6 7 = 3 ? \sqrt { 3 \sqrt { 4 \sqrt { 5 \sqrt { 6 \sqrt { 7 \cdots = 3 } } } } } ?

. . - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...