This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1.- x → − ∞ lim ( x 2 + 4 x + 1 − ln ( − x ) ) = (make the substitution u = - x), = u → ∞ lim ( u 2 − 4 u + 1 − ln ( u ) ) = u → ∞ lim u 2 − 4 u + 1 + ln ( u ) ( u 2 − 4 u + 1 − ln ( u ) ) ( u 2 − 4 u + 1 + ln ( u ) ) = u → ∞ lim u 2 − 4 u + 1 + ln ( u ) u 2 − 4 u + 1 − ln 2 ( u ) = (Divide numerator and denominator by u) = u → ∞ lim 1 − u 4 + u 2 1 + u ln ( u ) u − 4 + u 1 − u ln 2 ( u ) = + ∞ due to u → ∞ lim u ln 2 ( u ) = u → ∞ lim u ln ( u ) = 0
2.- x → − ∞ lim ( x 2 + 4 x + 1 − ln ( − x ) ) = x → ∞ lim ( x 2 − 4 x + 1 − ln ( x ) ) = ( ∗ ) (It can be proved that lim x → ∞ ( x 2 − 4 x + 1 − ( x − 2 ) ) = 0 ⇒ ) ( ∗ ) = x → − ∞ lim ( x 2 − 4 x + 1 − ( x − 2 ) + ( x − 2 ) − ln ( x ) ) = = x → ∞ lim ( x 2 − 4 x + 1 − ( x − 2 ) ) + x → ∞ lim ( ( x − 2 ) − ln ( x ) ) = + ∞ due to the first limit in the sum above is equal to 0 and the second limit above is equal to ∞ .