Difference of two infinities

Calculus Level 3

lim x ( x 2 + 4 x + 1 ln ( x ) ) = ? \large \lim_{x\to-\infty} \left( \sqrt{x^2+4x+1} - \ln(-x) \right) = \, ?

0
  • infinite
  • infinite

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1.- lim x ( x 2 + 4 x + 1 ln ( x ) ) = \lim_{x \to -\infty} \left(\sqrt{x^2 + 4x + 1} - \ln (-x)\right) = (make the substitution u = - x), = lim u ( u 2 4 u + 1 ln ( u ) ) = lim u ( u 2 4 u + 1 ln ( u ) ) ( u 2 4 u + 1 + ln ( u ) ) u 2 4 u + 1 + ln ( u ) = = \lim_{u \to \infty} \left(\sqrt{u^2 - 4u + 1} - \ln (u)\right) = \lim_{u \to \infty} \frac{(\sqrt{u^2 - 4u + 1} - \ln (u))(\sqrt{u^2 - 4u + 1} + \ln (u))}{\sqrt{u^2 - 4u + 1} + \ln (u)} = lim u u 2 4 u + 1 ln 2 ( u ) u 2 4 u + 1 + ln ( u ) = \lim_{u \to \infty} \frac{u^2 - 4u + 1 - \ln^2 (u)}{\sqrt{u^2 - 4u + 1} + \ln (u)} = (Divide numerator and denominator by u) = lim u u 4 + 1 u ln 2 ( u ) u 1 4 u + 1 u 2 + ln ( u ) u = + = \lim_{u \to \infty} \frac{u - 4 + \frac{1}{u} - \frac{\ln^2 (u)}{u}}{\sqrt{1 - \frac{4}{u} + \frac{1}{u^2}} + \frac{\ln (u)}{u}} = + \infty due to lim u ln 2 ( u ) u = lim u ln ( u ) u = 0 \displaystyle \lim_{u \to \infty} \frac{\ln^2 (u)}{u} = \lim_{u \to \infty} \frac{\ln (u)}{u} = 0

2.- lim x ( x 2 + 4 x + 1 ln ( x ) ) = lim x ( x 2 4 x + 1 ln ( x ) ) = ( ) \lim_{x \to -\infty} \left(\sqrt{x^2 + 4x + 1} - \ln (-x)\right) = \lim_{x \to \infty} \left(\sqrt{x^2 - 4x + 1} - \ln (x)\right) = (*) (It can be proved that lim x ( x 2 4 x + 1 ( x 2 ) ) = 0 \quad \lim_{x \to \infty} (\sqrt{x^2 - 4x +1} - (x - 2)) = 0 \Rightarrow ) ( ) = lim x ( x 2 4 x + 1 ( x 2 ) + ( x 2 ) ln ( x ) ) = (*) = \lim_{x \to -\infty} \left(\sqrt{x^2 - 4x + 1} - (x - 2) + (x - 2) - \ln (x)\right) = = lim x ( x 2 4 x + 1 ( x 2 ) ) + lim x ( ( x 2 ) ln ( x ) ) = + = \lim_{x \to \infty} (\sqrt{x^2 - 4x +1} - (x - 2)) + \lim_{x \to \infty} ((x - 2) - \ln (x)) = +\infty due to the first limit in the sum above is equal to 0 and the second limit above is equal to \infty .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...