Infinite Integral

Calculus Level 3

Let U = 0 d x x 4 + 7 x 2 + 1 \displaystyle U = \int _{ 0 }^{ \infty }{ \frac { dx }{ { x }^{ 4 }+{ 7 }{ x }^{ 2}+{ 1 } } } and V = 0 x 2 d x x 4 + 7 x 2 + 1 \displaystyle V = \int _{ 0 }^{ \infty }{ \frac { { x }^{ 2 }\ { dx } }{ { x }^{ 4 }+{ 7 }{ x }^{ 2}+{ 1 } } } . If U V = π a b UV = \dfrac {\pi^a}b , find a b + a + b ab+a+b .


The answer is 110.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 17, 2018

Consider V V as follows:

V = 0 x 2 x 4 + 7 x 2 + 1 d x Using 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 0 1 x 2 x 2 ( 1 x 4 + 7 x 2 + 1 ) d x = 0 1 1 + 7 x 2 + x 4 d x = U \begin{aligned} V & = \int_0^\infty \frac {x^2}{x^4+7x^2+1} dx & \small \color{#3D99F6} \text{Using }\int_0^\infty f(x)\ dx = \int_0^\infty \frac {f\left(\frac 1x\right)}{x^2}\ dx \\ & = \int_0^\infty \frac {\frac 1{x^2}}{x^2\left(\frac 1{x^4}+\frac 7{x^2}+1\right)} dx \\ & = \int_0^\infty \frac 1{1+7x^2+x^4} dx = U \end{aligned}

Now consider U U :

U = 0 1 x 4 + 7 x 2 + 1 d x = 0 1 ( x 2 + 7 3 5 2 ) ( x 2 + 7 + 3 5 2 ) d x = 1 3 5 0 ( 1 x 2 + 7 3 5 2 1 x 2 + 7 + 3 5 2 ) d x = 1 3 5 [ tan 1 x 7 3 5 2 7 3 5 2 tan 1 x 7 + 3 5 2 7 + 3 5 2 ] 0 = π 6 5 ( 1 7 3 5 2 1 7 + 3 5 2 ) = π 6 5 ( 7 + 3 5 2 7 3 5 2 ) Note that ( 7 + 3 5 2 7 3 5 2 ) 2 = 5 = π 6 5 ( 5 ) = π 6 \begin{aligned} U & = \int_0^\infty \frac 1{x^4+7x^2+1} dx \\ & = \int_0^\infty \frac 1{\left(x^2+\frac {7-3\sqrt 5}2\right)\left(x^2+\frac {7+3\sqrt 5}2\right)} dx \\ & = \frac 1{3\sqrt 5} \int_0^\infty \left(\frac 1{x^2+\frac {7-3\sqrt 5}2} - \frac 1{x^2+\frac {7+3\sqrt 5}2} \right) dx \\ & = \frac 1{3\sqrt 5} \left[\frac {\tan^{-1}\frac x{\sqrt{\frac {7-3\sqrt 5}2}}}{\sqrt{\frac {7-3\sqrt 5}2}} -\frac {\tan^{-1}\frac x{\sqrt{\frac {7+3\sqrt 5}2}}}{\sqrt{\frac {7+3\sqrt 5}2}} \right]_0^\infty \\ & = \frac \pi {6\sqrt 5} \left(\frac 1{\sqrt{\frac {7-3\sqrt 5}2}} -\frac 1{\sqrt{\frac {7+3\sqrt 5}2}} \right) \\ & = \frac \pi {6\sqrt 5} \color{#3D99F6} \left(\sqrt{\frac {7+3\sqrt 5}2} -\sqrt{\frac {7-3\sqrt 5}2} \right) & \small \color{#3D99F6} \text{Note that } \left(\sqrt{\frac {7+3\sqrt 5}2} -\sqrt{\frac {7-3\sqrt 5}2} \right)^2 = 5 \\ & = \frac \pi{6\sqrt 5}\color{#3D99F6}(\sqrt 5) \\ & = \frac \pi 6 \end{aligned}

Therefore, U V = U 2 = π 2 36 a b + a + b = 2 ( 72 ) + 2 + 36 = 110 UV = U^2 = \dfrac {\pi^2}{36} \implies ab+a+b = 2(72) + 2 + 36 = \boxed{110} .

Atman Kar
Apr 6, 2018

Absolutely correct I did the same

A Former Brilliant Member - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...