Infinite Integrations?!?!

Calculus Level 5

Let the derivative of F ( x ) F(x) be f ( x ) f(x) . Therefore, in general,
f ( x ) d x = F ( x ) + c \int f(x) dx = F(x) + c
However, we define a new function ψ \psi that takes a function and returns the indefinite integral of the function with the constant as zero.Therefore,
ψ ( f ( x ) ) = F ( x ) \psi (f(x)) = F(x)

(Note that c = 0 c = 0 )
( The whole idea is to make that sure that in any integration during the sum the constant is assumed to be zero. I am sorry for any technical mistake while explaining the idea.)

ψ n + 1 ( g ( x ) ) = ψ ( ψ n ( g ( x ) ) ) \psi^{n+1}(g(x)) = \psi(\psi^{n}(g(x))) and ψ 1 ( g ( x ) ) = ψ ( g ( x ) ) n N \psi^{1}(g(x)) = \psi(g(x)) \forall n \in \mathbb{N}

Let ψ n ( ln x ) x = ( 1 + 1 n ) = ϕ ( n ) \psi^{n}( \ln x )|_{ x =(1 + \frac{1}{n}) } = \phi(n)

If, L = lim n ( n ! ) L = \displaystyle \lim _ { n \to \infty} (n!) ϕ ( n ) + ln ( n e ) \phi(n) + \ln (n^e)

Find the value of e + L e + L

Details and Assumptions:

  • ln x \ln x denotes the natural logarithm of x x .

  • n ! n! denotes the factorial of n n .

  • e e is the exponential constant.


The answer is 1.149246.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Apr 4, 2015

Let

a k = I k , n ( x ) = ψ n k ( x k ln x ) for n , k N , k n \displaystyle a_k= I_{k,n}(x) = \psi^{n-k} (x^{k}\ln x)\;\;\;\; \text{for} \;\;\; n,k \in N \; , k\leq n

Where we have : I n , n ( x ) = x n ln x and I 0 , n ( x ) = ψ n ( ln x ) \displaystyle I_{n,n}(x) = x^{n}\ln x \;\;\; \text{and} \;\;\;\; I_{0,n}(x) = \psi^{n}(\ln x )

By definition:

a k = ψ n k 1 ( ψ ( x k ln x ) ) \displaystyle a_k = \psi^{n-k-1} (\psi (x^{k}\ln x))

Working on ψ ( x k ln x ) \psi (x^{k}\ln x) , integrate by parts with u = ln x , d v = x k d x u=\ln x , dv=x^{k}dx :

ψ ( x k ln x ) = x k + 1 k + 1 ln x ψ ( x k k + 1 ) \displaystyle \psi (x^{k}\ln x) = \frac{x^{k+1}}{k+1}\ln x - \psi ( \frac{x^{k}}{k+1} )

= x k + 1 k + 1 ln x x k + 1 ( k + 1 ) 2 \displaystyle = \frac{x^{k+1}}{k+1}\ln x - \frac{x^{k+1}}{(k+1)^2}

Therefore:

a k = ψ n k 1 ( x k + 1 k + 1 ln x x k + 1 ( k + 1 ) 2 ) \displaystyle a_k = \psi^{n-k-1} ( \frac{x^{k+1}}{k+1}\ln x - \frac{x^{k+1}}{(k+1)^2} )

= ψ n ( k + 1 ) ( x k + 1 ln x ) k + 1 ψ n k 1 ( x k + 1 ) ( k + 1 ) 2 \displaystyle = \frac{\psi^{n-(k+1)} (x^{k+1}\ln x )}{k+1} - \frac{ \psi^{n-k-1} (x^{k+1}) }{ (k+1)^2}

= a k + 1 k + 1 ψ n k 1 ( x k + 1 ) ( k + 1 ) 2 \displaystyle = \frac{a_{k+1}}{k+1} - \frac{ {\color{#D61F06}{\psi^{n-k-1} (x^{k+1})}} }{ (k+1)^2}

P r e p o s i t i o n : \mathbf{Preposition :}

ψ a ( x b ) = b ! ( a + b ) ! x a + b , a , b N \displaystyle \psi^a (x^b) = \frac{b!}{(a+b)!}x^{a+b} , \;\; \forall a,b \in N

Can be proved easily by induction on a a . Now substitute a = n k 1 , b = k + 1 a= n-k-1 \; ,\; b= k+1 :

ψ n k 1 ( x k + 1 ) = x n n ! ( k + 1 ) ! \displaystyle {\color{#D61F06}{\psi^{n-k-1} (x^{k+1})}} = \frac{x^{n}}{n!} (k+1 )!

Hence:

a k = a k + 1 k + 1 x n k ! n ! ( k + 1 ) \displaystyle a_k= \frac{a_{k+1}}{k+1} - \frac{x^{n}k!}{n! (k+1)}

Now replace k k by k 1 k-1 then solve rearrange for a k a_k :

a k = ( k ) a k 1 + x n ( k 1 ) ! n ! \displaystyle a_k = (k)a_{k-1} + \frac{x^{n}(k-1)!}{n!}

Now solve this recursion by the following fact:

a k = M k + B k a k 1 < = > a k = ( i = 1 k B i ) ( a 0 + j = 1 k M j m = 1 j B m ) \displaystyle a_k= M_k + B_ka_{k-1} <=> a_k = \Bigg(\prod_{i=1}^k B_i \Bigg)\Bigg(a_0 + \sum_{j=1}^k \frac{M_j}{\prod_{m=1}^j B_m} \Bigg)

We obtain at last :

a k = k ! ( a 0 + x n n ! H k ) where H k is the k t h Harmonic number \displaystyle a_k = k!( a_0 + \frac{x^{n}}{n!} H_k ) \;\;\; \text{where}\; H_k \; \text{is the}\; k^{th} \; \text{Harmonic number}

Now let k = n k=n and solve for a 0 a_0 :

a 0 = a n x n H n n ! \displaystyle a_0 = \frac{a_n - x^nH_n}{n!}

From the definition of a k a_k :

a 0 = ψ n ( ln x ) and a n = x n ln x \displaystyle a_0 = \psi^{n}(\ln x ) \;\;\;\;\; \text{and} \;\;\;\;\; a_n = x^n\ln x

Hence:

ψ n ( ln x ) = x n n ! ( ln x H n ) \displaystyle \boxed{ \psi^{n}(\ln x ) = \frac{x^n}{n!} (\ln x - H_n ) }

Then :

ϕ ( n ) = ψ n ( ln x ) x = 1 + 1 n = ( 1 + 1 n ) n n ! ( ln ( 1 + 1 n ) H n ) \displaystyle \phi (n) = \psi^{n}(\ln x )|_{x=1+\frac{1}{n} } = \frac{\bigg(1+\frac{1}{n} \bigg)^n}{n!} (\ln \bigg(1+\frac{1}{n} \bigg) - H_n )

= > L = lim n [ n ! ϕ ( n ) + e ln n ] \displaystyle => L= \lim_{n\to \infty} [ n!\phi (n) +e\ln n ]

= lim n [ ( 1 + 1 n ) n ( ln ( 1 + 1 n ) H n ) + e ln n ] \displaystyle = \lim_{n\to \infty} [\bigg(1+\frac{1}{n} \bigg)^n ( \ln \bigg(1+\frac{1}{n} \bigg) - H_n ) +e\ln n ]

= lim n [ ( e ) ( 0 H n ) + e ln n ] \displaystyle = \lim_{n\to \infty} [(e)(0-H_n) +e\ln n ]

= e lim n ( H n ln n ) \displaystyle = -e\lim_{n\to \infty} ( H_n - \ln n )

By the definition of the Euler-Mascheroni Constant :

L = e γ \displaystyle L= -e\gamma

So our desired answer is:

e + L = e ( 1 γ ) \displaystyle e+L =\boxed{ e(1-\gamma)}

Woah, that was brilliant. How did you get the recurrence formula, without using induction perhaps?

Ameya Daigavane - 5 years, 11 months ago

Nice Solution Did the same

pawan dogra - 4 years, 5 months ago

Great problem!

Bert Vitan - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...