Infinite Logging

Algebra Level 2

n = 0 lg ( x n ) lg ( x ) n = 9 \sum_{n=0}^\infin\frac{\lg\left(x^n\right)}{\lg\left(x\right)^n}=9

Solve for x x .


Notation: lg ( a ) = log 10 ( a ) \lg\left(a\right)=\log_{10}\left(a\right)

9 99 9\sqrt{99} 2 10 3 2\sqrt[3]{10} 10 10 10\sqrt{10} 1000 3 \sqrt[3]{1000}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

9 = n = 0 lg x n lg n x = n = 0 n lg x lg n x = n = 1 n ( lg x ) n 1 Let u = 1 lg x = n = 1 n u n 1 = n = 1 d d u u n = d d u n = 1 u n For u < 1 = d d u ( 1 1 u ) = 1 ( 1 u ) 2 \begin{aligned} 9 & = \sum_{n=0}^\infty \frac {\lg x^n}{\lg^n x} = \sum_{n=0}^\infty \frac {n \lg x}{\lg^n x} = \sum_{n=1}^\infty \frac n{(\lg x)^{n-1}} & \small \blue{\text{Let }u = \frac 1{\lg x}} \\ & = \sum_{n=1}^\infty \frac nu^{n-1} = \sum_{n=1}^\infty \frac d{du} u^n = \frac d{du} \sum_{n=1}^\infty u^n & \small \blue{\text{For }u< 1} \\ & = \frac d{du} \left(\frac 1{1-u}\right) = \frac 1{(1-u)^2} \end{aligned}

Therefore,

1 ( 1 u ) 2 = 9 1 u = 1 3 u = 2 3 Note that u = 1 lg x lg x = 3 2 x = 1 0 3 2 = 10 10 \begin{aligned} \frac 1{(1-u)^2} & = 9 \\ 1-u & = \frac 13 \\ \implies u & = \frac 23 & \small \blue{\text{Note that }u = \frac 1{\lg x}} \\ \lg x & = \frac 32 \\ \implies x & = 10^\frac 32 = \boxed{10\sqrt{10}} \end{aligned}

Gandoff Tan
Dec 1, 2019

n = 0 lg ( x n ) lg n ( x ) = 9 lg ( x 1 ) lg 1 ( x ) + lg ( x 2 ) lg 2 ( x ) + lg ( x 3 ) lg 3 ( x ) + = 9 1 lg ( x ) lg ( x ) + 2 lg ( x ) lg 2 ( x ) + 3 lg ( x ) lg 3 ( x ) + = 9 1 + 2 lg ( x ) + 3 lg 2 ( x ) + = 9 2 lg ( x ) + 3 lg 2 ( x ) + 4 lg 3 ( x ) + = 8 Let u = lg ( x ) 2 u + 3 u 2 + 4 u 3 + = 8 2 + 3 u + 4 u 2 + = 8 u 2 + ( 2 u + 3 u 2 + 4 u 3 + ) + ( 1 u + 1 u 2 + 1 u 3 + ) = 8 u 2 + 8 + m = 1 1 u m = 8 u m = 1 1 u m = 8 u 10 \begin{aligned} \displaystyle\sum_{n=0}^\infin\frac{\lg\left(x^n\right)}{\lg^n\left(x\right)}&=9\\ \frac{\lg\left(x^1\right)}{\lg^1\left(x\right)}+\frac{\lg\left(x^2\right)}{\lg^2\left(x\right)}+\frac{\lg\left(x^3\right)}{\lg^3\left(x\right)}+\cdots&=9\\ \frac{1\lg\left(x\right)}{\lg\left(x\right)}+\frac{2\lg\left(x\right)}{\lg^2\left(x\right)}+\frac{3\lg\left(x\right)}{\lg^3\left(x\right)}+\cdots&=9\\ 1+\frac{2}{\lg\left(x\right)}+\frac{3}{\lg^2\left(x\right)}+\cdots&=9\\ \frac{2}{\lg\left(x\right)}+\frac{3}{\lg^2\left(x\right)}+\frac{4}{\lg^3\left(x\right)}+\cdots&=8\\ \text{Let }u&=\lg\left(x\right)\\ \frac{2}{u}+\frac{3}{u^2}+\frac{4}{u^3}+\cdots&=8\\ 2+\frac{3}{u}+\frac{4}{u^2}+\cdots&=8u\\ 2+\left(\frac{2}{u}+\frac{3}{u^2}+\frac{4}{u^3}+\cdots\right)+\left(\frac{1}{u}+\frac{1}{u^2}+\frac{1}{u^3}+\cdots\right)&=8u\\ 2+8+\sum_{m=1}^{\infin}\frac{1}{u^m}&=8u\\ \sum_{m=1}^{\infin}\frac{1}{u^m}&=8u-10 \end{aligned}

m = 1 1 u m = 1 u + 1 u 2 + 1 u 3 + m = 1 1 u m = 1 u ( 1 + 1 u + 1 u 2 + ) m = 1 1 u m = 1 u ( 1 + m = 1 1 u m ) m = 1 1 u m = 1 u + 1 u m = 1 1 u m m = 1 1 u m 1 u m = 1 1 u m = 1 u ( 1 1 u ) m = 1 1 u m = 1 u m = 1 1 u m = 1 u 1 1 1 u m = 1 1 u m = 1 u 1 \begin{aligned} \sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}+\frac{1}{u^2}+\frac{1}{u^3}+\cdots\\ \sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}\left(1+\frac{1}{u}+\frac{1}{u^2}+\cdots\right)\\ \sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}\left(1+\sum_{m=1}^{\infin}\frac{1}{u^m}\right)\\ \sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}+\frac{1}{u}\sum_{m=1}^{\infin}\frac{1}{u^m}\\ \sum_{m=1}^{\infin}\frac{1}{u^m}-\frac{1}{u}\sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}\\ \left(1-\frac{1}{u}\right)\sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}\\ \sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u}\frac{1}{1-\frac{1}{u}}\\ \sum_{m=1}^{\infin}\frac{1}{u^m}&=\frac{1}{u-1} \end{aligned}

1 u < 1 1 < 1 u < 1 u < 1 or u > 1 \begin{aligned} \left|\frac{1}{u}\right|&<1\\ -1<\frac{1}{u}&<1\\ u<-1&\text{ or }u>1\\ \end{aligned}

m = 1 1 u m = 8 u 10 1 u 1 = 8 u 10 1 = ( 8 u 10 ) ( u 1 ) 1 = 8 u 2 8 u 10 u + 10 8 u 2 18 u + 9 = 0 ( 2 u 3 ) ( 4 u 3 ) = 0 \begin{aligned} \sum_{m=1}^{\infin}\frac{1}{u^m}&=8u-10\\ \frac{1}{u-1}&=8u-10\\ 1&=\left(8u-10\right)\left(u-1\right)\\ 1&=8u^2-8u-10u+10\\ 8u^2-18u+9&=0\\ (2u-3)(4u-3)&=0\\ \end{aligned}

2 u 3 = 0 2 u = 3 u = 3 2 lg ( x ) = 3 2 x = 1 0 3 2 x = 1 0 2 2 + 1 2 x = ( 1 0 1 ) ( 1 0 1 2 ) x = 10 10 or 4 u 3 = 0 4 u = 3 u = 3 4 ( Rej. ) \begin{matrix} \begin{aligned} 2u-3&=0\\ 2u&=3\\ u&=\frac32\\ \lg\left(x\right)&=\frac32\\ x&=10^\frac32\\ x&=10^{\frac22+\frac12}\\ x&=\left(10^1\right)\left(10^\frac12\right)\\ x&=\boxed{10\sqrt{10}} \end{aligned} &\text{ or }& \begin{aligned} 4u-3&=0\\ 4u&=3\\ u&=\frac34\,(\text{Rej.}) \end{aligned} \end{matrix}

Let l o g 10 x = y log_{10}x=y . Then 1 + 2 y + 3 y 2 + 4 y 3 + . . . . = 9 1+\dfrac{2}{y}+\dfrac{3}{y^2}+\dfrac{4}{y^3}+....=9 . Or ( y y 1 ) 2 = 9 (\dfrac{y}{y-1})^2=9 , or y = l o g 10 x = 3 2 y=log_{10}x=\dfrac{3}{2} or y = l o g 10 x = 3 4 y=log_{10}x=\dfrac{3}{4} . Since the sum converges to 9 9 , y y must be greater than 1 1 . So x = 1 0 3 / 2 = 10 10 x=10^{3/2}=\boxed {10\sqrt {10}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...