Infinite Power Tower

Algebra Level 3

In an infinite tower of x's shown above, find the value of 1000 x \left\lceil 1000x \right\rceil

If you think no such x x exists, give your answer as 666.


The answer is 666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given: x x x x . . . = 10 { x }^{ { x }^{ { x }^{ x... } } }\quad =\quad 10

( x ) x x x . . . = 10 ( x ) 10 = 10 x 10 10 = 10 10 x 1.2589... 1000 x = 1259 \,\, \Rightarrow \quad { \left( x \right) }^{ { x }^{ { x }^{ x... } } }\quad =\quad 10\\ \Rightarrow \quad { \left( x \right) }^{ 10 }\quad =\quad 10\\ \Rightarrow \quad \sqrt [ 10 ]{ { x }^{ 10 } } \quad =\quad \sqrt [ 10 ]{ 10 } \\ \Rightarrow \quad x\quad \approx \quad 1.2589...\\ \Rightarrow \quad \left\lceil 1000x \right\rceil \quad =\quad \boxed { 1259 }

nice solution

Abhishek Chopra - 6 years, 5 months ago

Log in to reply

This is analogous to this problem . The given solution is wrong... there is no such x x

Otto Bretscher - 5 years, 3 months ago
Justin Tuazon
Dec 18, 2014

x x x . . . = 10 x x x . . . x x . . . . = 10 x x . . . . x = 10 x x . . . . x = 10 10 x 1.2589254 1000 x = 1258.9254 1259 { x }^{ { x }^{ x... } }=10\\ \sqrt [ { x }^{ { x... }^{ . } } ]{ { x }^{ { x }^{ x... } } } =\sqrt [ { x }^{ { x... }^{ . } } ]{ 10 } \\ x=\sqrt [ { x }^{ { x... }^{ . } } ]{ 10 } \\ x=\sqrt [ 10 ]{ 10 } \\ x\approx 1.2589254\\ 1000x=1258.9254\approx 1259

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...