Cross Cross Cross

Calculus Level 2

( 1 + 2 3 + 1 ) ( 1 + 2 3 2 + 1 ) ( 1 + 2 3 3 + 1 ) = ? \left (1+\frac { 2 }{ 3+1 } \right)\left (1+\frac { 2 }{ { 3 }^{ 2 }+1 } \right)\left (1+\frac { 2 }{ { 3 }^{ 3 }+1 } \right) \cdots = \ ?

This problem is part of the set AMSP .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This infinite product can be written as

k = 1 ( 3 k + 3 3 k + 1 ) = k = 1 ( 3 × ( 3 k 1 + 1 ) 3 k + 1 ) . \displaystyle\prod_{k=1}^{\infty} \left(\dfrac{3^{k} + 3}{3^{k} + 1}\right) = \prod_{k=1}^{\infty} \left(\dfrac{3\times(3^{k-1} + 1)}{3^{k} + 1}\right).

We then have that each denominator cancels the ( 3 k 1 + 1 ) (3^{k-1} + 1) term in the following fraction. For the N N th partial product we are then left with the numerator 3 × 2 3 \times 2 from the first term, N 1 N - 1 factors of 3 3 left over from the following N 1 N - 1 numerators, and the denominator of the last term, i.e.,

2 × 3 × 3 N 1 3 N + 1 = 2 × 3 N 3 N + 1 , \dfrac{2\times3\times3^{N-1}}{3^{N} + 1} = 2\times\dfrac{3^{N}}{3^{N} + 1}, which as N N \rightarrow \infty goes to 2 1 = 2 . 2*1 = \boxed{2}.

Shandy Rianto
Apr 30, 2015

Let,

A = ( 1 + 2 3 + 1 ) ( 1 + 2 3 2 + 1 ) ( 1 + 2 3 3 + 1 ) ( 1 + 2 3 x + 1 ) A =\left(1+\frac { 2 }{ 3+1 }\right ) \left(1+\frac { 2 }{ { 3 }^{ 2 }+1 }\right )\left (1+\frac { 2 }{ { 3 }^{ 3 }+1 } \right) \cdots \left (1+\frac { 2 }{ { 3 }^{ x }+1 } \right)

For x = 1 x=1 we have

A = ( 1 + 2 3 + 1 ) A =\left(1+\frac { 2 }{ 3+1 }\right )

A = 3 2 = 1.5 A = \frac{3}{2} = 1.5

For x = 2 x=2 we have

A = ( 1 + 2 3 + 1 ) ( 1 + 2 3 2 + 1 ) A =\left(1+\frac { 2 }{ 3+1 }\right ) \left(1+\frac { 2 }{ { 3 }^{ 2 }+1 }\right )

A = 3 2 6 5 A = \frac {3}{2} \cdot \frac{6}{5}

A = 9 5 = 1.8 A = \frac{9}{5} = 1.8

For x = 3 x=3 we have

A = ( 1 + 2 3 + 1 ) ( 1 + 2 3 2 + 1 ) ( 1 + 2 3 3 + 1 ) A =\left(1+\frac { 2 }{ 3+1 }\right ) \left(1+\frac { 2 }{ { 3 }^{ 2 }+1 }\right )\left (1+\frac { 2 }{ { 3 }^{ 3 }+1 } \right)

A = 3 2 6 5 15 14 A = \frac {3}{2} \cdot \frac{6}{5} \cdot \frac{15}{14}

A = 27 14 = 1.929 A = \frac{27}{14} = 1.929

For x = 4 x=4 we have

A = ( 1 + 2 3 + 1 ) ( 1 + 2 3 2 + 1 ) ( 1 + 2 3 3 + 1 ) ( 1 + 2 3 4 + 1 ) A =\left(1+\frac { 2 }{ 3+1 }\right ) \left(1+\frac { 2 }{ { 3 }^{ 2 }+1 }\right )\left (1+\frac { 2 }{ { 3 }^{ 3 }+1 } \right) \left (1+\frac { 2 }{ { 3 }^{ 4 }+1 } \right)

A = 3 2 6 5 15 14 42 41 A = \frac {3}{2} \cdot \frac{6}{5} \cdot \frac{15}{14} \cdot \frac{42}{41}

A = 81 41 = 1.976 A = \frac{81}{41} = 1.976

For x = 5 x=5 we have

A = ( 1 + 2 3 + 1 ) ( 1 + 2 3 2 + 1 ) ( 1 + 2 3 3 + 1 ) ( 1 + 2 3 4 + 1 ) ( 1 + 2 3 5 + 1 ) A =\left(1+\frac { 2 }{ 3+1 }\right ) \left(1+\frac { 2 }{ { 3 }^{ 2 }+1 }\right )\left (1+\frac { 2 }{ { 3 }^{ 3 }+1 } \right) \left (1+\frac { 2 }{ { 3 }^{ 4 }+1 } \right) \left (1+\frac { 2 }{ { 3 }^{ 5 }+1 } \right)

A = 3 2 6 5 15 14 42 41 123 122 A = \frac {3}{2} \cdot \frac{6}{5} \cdot \frac{15}{14} \cdot \frac{42}{41} \cdot \frac{123}{122}

A = 243 122 = 1.9918 A = \frac{243}{122} = 1.9918

For x = 6 x=6 we have A = 1.9973 A = 1.9973

For x = 7 x=7 we have A = 1.9991 A = 1.9991

For x = 8 x=8 we have A = 1.9997 A = 1.9997

For x = 9 x=9 we have A = 1.999898 A = 1.999898

For x = 10 x=10 we have A = 1.999966 A = 1.999966

So for x = x = \infty we have A = 2 \boxed{A=2}

Moderator note:

You have only shown that x = 10 x= 10 yields A = 1.999966 A= 1.999966 . That's not a good indication to prove that the limit approach 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...