Infinite product

Calculus Level 4

lim n r = 1 2 n ( 2 + r n ) 1 n \large \displaystyle \lim_{n \to \infty} \prod_{r=1}^{2n} \left(2+\dfrac{r}{n} \right)^{\frac{1}{n}}

The above limit is of the form 2 b e c \dfrac{2^b}{e^c} , where b , c b,c are positive integers.

Enter the value of b 2 + c \dfrac{b}{2+c} .

Notation: e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 27, 2017

Relevant wiki: Riemann Sums

P = lim n r = 1 2 n ( 2 + r n ) = lim n exp ( r = 1 2 n 1 n ln ( 2 + r n ) ) = exp ( lim n r = 1 2 n 1 n ln ( 2 + r n ) ) Riemann’s sum: lim n r = a b f ( r n ) = lim n a / n lim n b / n f ( x ) d x = exp ( 0 2 ln ( 2 + x ) d x ) Let u = 2 + x , d u = d x = exp ( 2 4 ln u d u ) By integration by parts. = exp ( u ln u 2 4 2 4 d u ) = exp ( u ln u u 2 4 ) = exp ( 4 ln 4 4 2 ln 2 + 2 ) = exp ( 6 ln 2 2 ) = 2 6 e 2 \begin{aligned} P & = \lim_{n \to \infty} \prod_{r=1}^{2n} \left(2+\frac rn \right) \\ & = \lim_{n \to \infty} \exp \left(\sum_{r=1}^{2n} \frac 1n \ln \left(2+\frac rn \right) \right) \\ & = \exp \left( \lim_{n \to \infty} \sum_{r=1}^{2n} \frac 1n \ln \left(2+\frac rn \right) \right) & \small \color{#3D99F6} \text{Riemann's sum: } \lim_{n \to \infty} \sum_{r=a}^b f \left(\frac rn \right) = \int_{\lim_{n \to \infty} a/n}^{\lim_{n \to \infty} b/n} f(x) \ dx \\ & = \exp \left(\int_0^2 \ln (2 + x) \ dx \right) & \small \color{#3D99F6} \text{Let } u = 2+x, \ du = dx \\ & = \exp \left(\int_2^4 \ln u \ du \right) & \small \color{#3D99F6} \text{By integration by parts.} \\ & = \exp \left( u \ln u \bigg|_2^4 - \int_2^4 du \right) \\ & = \exp \left( u \ln u - u \bigg|_2^4 \right) \\ & = \exp \left( 4 \ln 4 - 4 - 2 \ln 2 + 2 \right) \\ & = \exp \left( 6 \ln 2 - 2 \right) \\ & = \frac {2^6}{e^2} \end{aligned}

b 2 + c = 6 2 + 2 = 1.5 \implies \dfrac b{2+c} = \dfrac 6{2+2} = \boxed{1.5}

Let the limit equal L. Take log on both sides. The right hand side gets converted into a Riemann Sum. This yields the values of b and c quite easily

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...