Infinite Radicals!

Level pending

If 3 4 2 ( x + x + x + . . . ) d x = a b \displaystyle\int_{\frac{3}{4}}^{2} (\sqrt{x + \sqrt{x + \sqrt{x + ... }}}) \:\ dx = \dfrac{a}{b} ,

where a a and b b are coprime positive integers, find a + b a + b .


The answer is 77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 23, 2019

Let y = x + x + x + . . . y 2 x = x + x + x + . . . = y y = \sqrt{x + \sqrt{x + \sqrt{x + ... }}} \implies y^2 - x = \sqrt{x + \sqrt{x + \sqrt{x + ... }}} = y

y 2 y x = 0 y = 1 + 1 + 4 x 2 \implies y^2 - y - x = 0 \implies y = \dfrac{1 + \sqrt{1 + 4x}}{2} dropping the negative root for

3 4 x 2 \dfrac{3}{4} \leq x \leq 2 .

3 4 2 ( x + x + x + . . . ) d x = 1 2 3 4 2 ( 1 + 1 + 4 x ) d x = \implies \displaystyle\int_{\frac{3}{4}}^{2} (\sqrt{x + \sqrt{x + \sqrt{x + ... }}}) \:\ dx = \dfrac{1}{2}\displaystyle\int_{\frac{3}{4}}^{2} (1 + \sqrt{1 + 4x}) \:\ dx =

1 2 ( x + 1 6 ( 1 + 4 x ) 3 2 ) 3 4 2 = \dfrac{1}{2}(x + \dfrac{1}{6}(1 + 4x)^{\dfrac{3}{2}})|_{\frac{3}{4}}^{2} =

1 2 ( 2 + 19 6 3 4 ) = 53 24 = a b a + b = 77 \dfrac{1}{2}(2 + \dfrac{19}{6} - \dfrac{3}{4}) = \dfrac{53}{24} = \dfrac{a}{b} \implies a + b =\boxed{77} .

Note:

Letting z 1 = x z_{1} = \sqrt{x} and z n + 1 = x + z n z_{n + 1} = \sqrt{x + z_{n}} and assuming lim n z n \lim_{n \rightarrow \infty} z_{n} exists

\implies

y = lim n z n = lim n z n + 1 = lim n x + z n y = \lim_{n \rightarrow \infty} z_{n} = \lim_{n \rightarrow \infty} z_{n + 1} = \lim_{n \rightarrow \infty} \sqrt{x + z_{n}}

and lim n S n = L lim n ( S n ) 2 = L 2 \lim_{n \rightarrow \infty} S_{n} = L \implies \lim_{n \rightarrow \infty} (S_{n})^2 = L^2

y 2 = lim n x + z n = x + lim n z n = x + y \implies y^2 = \lim_{n \rightarrow \infty} x + z_{n} = x + \lim_{n \rightarrow \infty} z_{n} = x + y \implies

y 2 y x = 0 y = 1 + 1 + 4 x 2 \implies y^2 - y - x = 0 \implies y = \dfrac{1 + \sqrt{1 + 4x}}{2} \:\ same as above from here.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...