Infinite Radicals!

Calculus Level 4

Find the value of a > 1 a > 1 such that

1 a x + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + . . . d x = 7 2 \int_{1}^{a} \sqrt{x + \sqrt{(x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{1 + ...}}}}} \:\ dx = \dfrac{7}{2}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 24, 2019

x + 2 = ( x + 2 ) 2 = 1 + ( x 2 + 4 x + 3 ) = 1 + ( x + 1 ) ( x + 3 ) = x + 2 = \sqrt{(x + 2)^2} = \sqrt{1 + (x^2 + 4x + 3)} = \sqrt{1 + (x + 1)(x + 3)} =

1 + ( x + 1 ) ( x + 3 ) 2 = 1 + ( x + 1 ) 1 + x 2 + 6 x + 8 = \sqrt{1 + (x + 1)\sqrt{(x + 3)^2}} = \sqrt{1 + (x + 1)\sqrt{1 + x^2 + 6x + 8}} =

1 + ( x + 1 ) 1 + ( x + 2 ) ( x + 4 ) = 1 + ( x + 1 ) 1 + ( x + 2 ) ( x + 4 ) 2 = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)(x + 4)}} = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{(x + 4)^2}}} =

1 + ( x + 1 ) 1 + ( x + 2 ) 1 + x 2 + 8 x + 15 = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{1 + x^2 + 8x + 15}}} =

1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) ( x + 5 ) = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)(x + 5)}}} =

1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) ( x + 5 ) 2 = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{(x + 5)^2}}}} =

To show that this pattern continues indefinitely we just need to show:

1 + ( x + n ) ( x + n + 2 ) 2 = \sqrt{ 1 + (x + n)\sqrt{(x + n + 2)^2}} = 1 + ( x + n ) 1 + ( x + n + 1 ) ( x + n + 3 ) \sqrt{1 + (x + n)\sqrt{1 + (x + n + 1)(x + n + 3)}}

but it's fairly obvious that ( x + n + 2 ) 2 = ( x + n ) 2 + 4 ( x + n ) + 4 (x + n + 2)^2 = (x + n)^2 + 4(x + n) + 4

and

1 + ( x + n + 1 ) ( x + n + 3 ) = 1 + ( x + n ) 2 + 4 ( x + n ) + 3 = ( x + n ) 2 + 4 ( x + n ) + 4 1 + (x + n + 1)(x + n + 3) = 1 + (x + n)^2 + 4(x + n) + 3 = (x + n)^2 + 4(x + n) + 4

f ( x ) = x + 2 = x + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + . . . \therefore f(x) = x + 2 = \sqrt{x + \sqrt{(x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{1 + ...}}}}}

1 a x + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + . . . d x = \implies \displaystyle\int_{1}^{a} \sqrt{x + \sqrt{(x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{1 + ...}}}}} \:\ dx =

1 a x + 2 d x = x 2 2 + 2 x 1 a = a 2 + 4 a 5 2 = 7 2 a 2 + 4 a 12 = 0 ( a + 6 ) ( a 2 ) = 0 a > 1 a = 2 \displaystyle\int_{1}^{a} x + 2 \:\ dx = \dfrac{x^2}{2} + 2x|_{1}^{a} = \dfrac{a^2 + 4a - 5}{2} = \dfrac{7}{2} \implies a^2 + 4a - 12 = 0 \implies (a + 6)(a - 2) = 0 \:\ a > 1 \implies a = \boxed{2} .

Alternative approach to finding the area:

The graph above shows the desired area of the trapezoid(Area under the curve

f ( x ) = x + 2 f(x) = x + 2 on [ 1 , a ] [1,a] . The graph also shows the function(red line)

x + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + ( x + 4 ) 1 + ( x + 5 ) 1 + ( x + 6 ) 1 + ( x + 7 ) \sqrt{x + \sqrt{(x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{1 + (x + 4)\sqrt{1 + (x + 5)\sqrt{1 + (x + 6)\sqrt{1 + (x + 7)}}}}}}}} .

The Area of the trapezoid A = 1 2 ( a + 5 ) ( a 1 ) = 7 2 a 2 + 4 a 12 = 0 ( a + 6 ) ( a 2 ) = 0 a > 1 a = 2 A = \dfrac{1}{2}(a + 5)(a - 1) = \dfrac{7}{2} \implies a^2 + 4a - 12 = 0 \implies (a + 6)(a - 2) = 0 \:\ a > 1 \implies a = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...