Infinite Radicals!

Calculus Level 3

Find the value of a > 1 a > 1 such that

1 a 1 x + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + . . . d x = 2 ln ( a 3 ) \displaystyle\int_{1}^{a} \dfrac{1}{\sqrt{x + \sqrt{(x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{1 + ...}}}}}} \:\ dx = 2\ln(\dfrac{a}{\sqrt{3}})


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 24, 2019

x + 2 = ( x + 2 ) 2 = 1 + ( x 2 + 4 x + 3 ) = 1 + ( x + 1 ) ( x + 3 ) = x + 2 = \sqrt{(x + 2)^2} = \sqrt{1 + (x^2 + 4x + 3)} = \sqrt{1 + (x + 1)(x + 3)} =

1 + ( x + 1 ) ( x + 3 ) 2 = 1 + ( x + 1 ) 1 + x 2 + 6 x + 8 = \sqrt{1 + (x + 1)\sqrt{(x + 3)^2}} = \sqrt{1 + (x + 1)\sqrt{1 + x^2 + 6x + 8}} =

1 + ( x + 1 ) 1 + ( x + 2 ) ( x + 4 ) = 1 + ( x + 1 ) 1 + ( x + 2 ) ( x + 4 ) 2 = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)(x + 4)}} = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{(x + 4)^2}}} =

1 + ( x + 1 ) 1 + ( x + 2 ) 1 + x 2 + 8 x + 15 = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{1 + x^2 + 8x + 15}}} =

1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) ( x + 5 ) = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)(x + 5)}}} =

1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) ( x + 5 ) 2 = \sqrt{1 + (x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{(x + 5)^2}}}} =

To show that this pattern continues indefinitely we just need to show:

1 + ( x + n ) ( x + n + 2 ) 2 = \sqrt{ 1 + (x + n)\sqrt{(x + n + 2)^2}} = 1 + ( x + n ) 1 + ( x + n + 1 ) ( x + n + 3 ) \sqrt{1 + (x + n)\sqrt{1 + (x + n + 1)(x + n + 3)}}

but it's fairly obvious that ( x + n + 2 ) 2 = ( x + n ) 2 + 4 ( x + n ) + 4 (x + n + 2)^2 = (x + n)^2 + 4(x + n) + 4

and

1 + ( x + n + 1 ) ( x + n + 3 ) = 1 + ( x + n ) 2 + 4 ( x + n ) + 3 = ( x + n ) 2 + 4 ( x + n ) + 4 1 + (x + n + 1)(x + n + 3) = 1 + (x + n)^2 + 4(x + n) + 3 = (x + n)^2 + 4(x + n) + 4

f ( x ) = x + 2 = x + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + . . . \therefore f(x) = x + 2 = \sqrt{x + \sqrt{(x + 1)\sqrt{1 + (x + 2)\sqrt{1 + (x + 3)\sqrt{1 + ...}}}}}

Let w ( x ) = 1 f ( x ) = 1 x + 2 w(x) = \dfrac{1}{f(x)} = \dfrac{1}{x + 2} \implies

1 a w ( x ) d x = ln ( x + 2 ) 1 a = ln ( a + 2 3 ) = \implies \displaystyle\int_{1}^{a} w(x) \:\ dx = \ln(x + 2)|_{1}^{a} = \ln(\dfrac{a + 2}{3}) =

2 ln ( a 3 ) = ln ( a 2 3 ) a 2 a 2 = 0 ( a 2 ) ( a + 1 ) = 0 2\ln(\dfrac{a}{\sqrt{3}}) = \ln(\dfrac{a^2}{3}) \implies a^2 -a - 2 = 0 \implies (a - 2)(a + 1) = 0

and a > 1 a = 2 a > 1 \implies a = \boxed{2} .

Isn’t there a typo in original question ?

Anand Kishore - 1 year, 1 month ago

There may be, but I don't see it. Where is it?

Rocco Dalto - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...