Algebra Problem by Kevin Tran (3)

Algebra Level 3

16 = x x + x x . . . \large 16=\sqrt { x-\sqrt { x+\sqrt { x-\sqrt { x... } } } }

What is the value of x x ?


The answer is 273.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

16 = x x + x x + Let y = x + x x + x 16 = x y Squaring both sides 256 = x y . . . ( 1 ) \begin{aligned} 16 & = \sqrt{x-\color{#3D99F6}\sqrt{x+\sqrt{x-\sqrt{x+\cdots}}}} & \small \color{#3D99F6} \text{Let }y = \sqrt{x+\sqrt{x-\sqrt{x+\sqrt{x-\cdots}}}} \\ 16 & = \sqrt{x-\color{#3D99F6}y} & \small \color{#3D99F6} \text{Squaring both sides} \\ \implies 256 & = x - y \quad \quad ...(1) \end{aligned}

From y y :

y = x + x x + x = x + 16 Squaring both sides y 2 = x + 16 x = y 2 16 . . . ( 2 ) \begin{aligned} y & = \sqrt{x+\color{#3D99F6}\sqrt{x-\sqrt{x+\sqrt{x-\cdots}}}} \\ & = \sqrt{x+\color{#3D99F6}16} & \small \color{#3D99F6} \text{Squaring both sides} \\ y^2 & = x + 16 \\ \implies x & = y^2 - 16 \quad \quad ...(2) \end{aligned}

Then, from ( 1 ) (1) :

256 = x y Note that (2): x = y 2 16 = y 2 16 y y 2 y 272 = 0 ( y 17 ) ( y + 16 ) = 0 y = 17 Note that y > 0 x = 1 7 2 16 . . . ( 2 ) = 273 \begin{aligned} 256 & = {\color{#3D99F6}x} - y & \small \color{#3D99F6} \text{Note that (2): }x = y^2 - 16 \\ & = {\color{#3D99F6}y^2 - 16} - y \\ \implies y^2 - y - 272 & = 0 \\ (y-17)(y+16) & = 0 \\ \implies y & = 17 & \small \color{#3D99F6} \text{Note that }y > 0 \\ x & = 17^2 - 16 \quad \quad ...(2) \\ & = \boxed{273} \end{aligned}

Kevin Tran
Sep 3, 2017

16 = x x + x x . . . 16 = x x + 16 256 = x x + 16 256 x = x + 16 256 + x = x + 16 65536 512 x + x 2 = x + 16 x 2 513 x + 65520 = 0 16\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \sqrt { x-\sqrt { x+\sqrt { x-\sqrt { x... } } } } \\ 16\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \sqrt { x-\sqrt { x+16 } } \\ 256\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad x-\sqrt { x+16 } \\ 256-x\quad \quad \quad \quad \quad \quad \quad \quad =\quad -\sqrt { x+16 } \quad \\ -256+x\quad \quad \quad \quad \quad \quad \quad =\quad \sqrt { x+16 } \\ 65536-512x+{ x }^{ 2 }\quad =\quad x+16\\ { x }^{ 2 }-513x+65520\quad =\quad 0\quad

Therefore, x x = 273.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...