infinite root product

Calculus Level 4

lim n i = 0 n ( 1 + i n ) 1 n = ? \lim_{n \to \infty} \prod_{i=0}^{n} \left( 1+\frac{i}{n} \right)^{\frac{1}{n}} = \ ?


The answer is 1.4715.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim n i = 0 n ( 1 + i n ) 1 n = lim n i = 0 n exp ( ln ( 1 + i n ) 1 n ) exp ( x ) = e x = exp ( lim n 1 n i = 0 n ln ( 1 + i n ) ) By Riemann sums = exp ( 0 1 ln ( 1 + x ) d x ) = exp ( ( 1 + x ) ln ( 1 + x ) x 0 1 ) = exp ( 2 ln 2 1 ) = 4 e 1.412 \begin{aligned} L & = \lim_{n \to \infty} \prod_{i=0}^n \left(1+\frac in\right)^\frac 1n \\ & = \lim_{n \to \infty} \prod_{i=0}^n \exp \left(\ln \left(1+\frac in\right)^\frac 1n \right) & \small \blue{\exp (x) = e^x} \\ & = \exp \left(\blue{\lim_{n \to \infty} \frac 1n \sum_{i=0}^n \ln \left(1+\frac in\right)} \right) & \small \blue{\text{By Riemann sums}} \\ & = \exp \left(\blue{\int_0^1 \ln(1+x)\ dx} \right) \\ & = \exp \left((1+x)\ln(1+x) - x \bigg|_0^1 \right) \\ & = \exp \left(2\ln 2 - 1 \right) \\ & = \frac 4e \approx \boxed{1.412} \end{aligned}


Reference: Riemann sums

Amal Hari
Nov 2, 2019

product series of the form lim n i = 0 n ( a + i × b n ) 1 n \displaystyle\lim_{n \to \infty} \displaystyle \prod_{i=0}^{n} \left( a +\dfrac{i\times b}{n} \right) ^{\dfrac{1}{n}}

can be written as follows ( a + b ) ( b a + 1 ) a b e \dfrac{\left( a+b\right) \left( \dfrac{b}{a} +1 \right)^{\dfrac{a}{b}}}{e}

in the special case above a=1 and b=1

( 2 ) ( 2 ) 1 e \dfrac{\left( 2\right) \left( 2 \right)^{1}}{e} = 4 e \dfrac{4}{e}

edit: this form can be derived using riemann sums here

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...