Infinite sequence

Calculus Level 4

S = a 0 1 0 0 + a 1 1 0 2 + a 2 1 0 4 + a 3 1 0 6 + S=\frac{a_0}{10^0}+\frac{a_1}{10^2}+\frac{a_2}{10^4}+\frac{a_3}{10^6}+\cdots

Consider the infinite sum above, where the sequence { a n } \left \{a_n \right \} is defined by a 0 = a 1 = 1 a_0=a_1=1 , and a n = 20 a n 1 + 12 a n 2 a_n=20a_{n-1}+12a_{n-2} for all positive integers n 2 n\geq2 .

If S = a b \sqrt{S} = \dfrac{a}{\sqrt{b}} , where a a and b b are relatively prime positive integers, find a + b a+b .

2088 2560 2042 2000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

In summation form, S S is as follows:

S = n = 0 a n 1 0 2 n = n = 0 a n 10 0 n = a 0 10 0 0 + a 1 10 0 1 + n = 2 a n 10 0 n = 1 + 1 100 + n = 2 20 a n 1 + 12 a n 2 10 0 n = 101 100 + 20 n = 1 a n 10 0 n + 1 + 12 n = 0 a n 10 0 n + 2 = 101 100 + 20 100 ( n = 0 a n 10 0 n a 0 10 0 0 ) + 12 10000 n = 0 a n 10 0 n = 101 100 + 1 5 S 1 5 + 3 2500 S ( 1 1 5 3 2500 ) S = 101 100 1 5 1997 2500 S = 81 100 S = 81 × 25 1997 S = 45 1997 \begin{aligned} S & = \sum_{n=0}^\infty \frac {a_n}{10^{2n}} = \sum_{n=0}^\infty \frac {a_n}{100^n} \\ & = \frac {a_0}{100^0} + \frac {a_1}{100^1} + \sum_{n=2}^\infty \frac {a_n}{100^n} \\ & = 1 + \frac 1{100} + \sum_{n=2}^\infty \frac {20a_{n-1}+12a_{n-2}}{100^n} \\ & = \frac {101}{100} + 20 \sum_{\red{n=1}}^\infty \frac {a_n}{100^{n+1}} + 12 \sum_{n=0}^\infty \frac {a_n}{100^{n+2}} \\ & = \frac {101}{100} + \frac {20}{100} \left(\sum_{\red{n=0}}^\infty \frac {a_n}{100^n} - \red{\frac {a_0}{100^0}} \right) + \frac {12}{10000} \sum_{n=0}^\infty \frac {a_n}{100^n} \\ & = \frac {101}{100} + \frac 15 S - \frac 15 + \frac 3{2500} S \\ \left(1-\frac 15 - \frac 3{2500} \right) S & = \frac {101}{100} - \frac 15 \\ \frac {1997}{2500} S & = \frac {81}{100} \\ S & = \frac {81 \times 25}{1997} \\ \implies \sqrt S & = \frac {45}{\sqrt{1997}} \end{aligned}

Therefore a + b = 45 + 1997 = 2042 a+b = 45+1997 = \boxed{2042} .

Of all answers here, this is the most understandable one with its step-by-step, line by line approach, but still I am stuck at the minus one part inside the parenthesis. Where did it come from? Is it because we already counted for a0 and a1 separately (the 101/100) outside?

Saya Suka - 1 year, 5 months ago

Log in to reply

Note that the summation changes from n = 1 n=1 to n = 0 n=0 , we have to remove the excess a 0 10 0 0 = 1 \dfrac {a_0}{100^0} = 1 .

Chew-Seong Cheong - 1 year, 5 months ago
Aaghaz Mahajan
Jan 8, 2020

Let

f ( x ) = n = 0 a n x n f\left(x\right)=\sum_{n=0}^{\infty}a_{n}x^{n}

Multiplying the reccurence relation by x n x^{n} and summing the relation from n = 2 n=2 to n = n=\infty we get

f ( x ) a 1 x a 0 = 20 x ( f ( x ) a 0 ) + 12 x 2 f ( x ) f\left(x\right)-a_{1}x-a_{0}=20x\left(f\left(x\right)-a_{0}\right)+12x^{2}f\left(x\right)

Putting a 0 = a 1 = 1 \displaystyle a_{0}=a_{1}=1 and then after manipulating a bit, we finally arrive at

f ( x ) = 19 x 1 12 x 2 + 20 x 1 f\left(x\right)=\frac{19x-1}{12x^{2}+20x-1}

Now, simply observe that S = f ( 1 0 2 ) = 2025 1997 \displaystyle S=f\left(10^{-2}\right)=\frac{2025}{1997} and thus we arrive at our answer .

Adhiraj Dutta
Jan 7, 2020

S 20 S 1 0 2 12 S 1 0 4 = ( a 0 1 0 0 + a 1 1 0 2 + a 2 1 0 4 + a 3 1 0 6 + ) ( 20 a 0 1 0 2 + 20 a 1 1 0 4 + 20 a 2 1 0 6 + 20 a 3 1 0 8 + ) ( 12 a 0 1 0 4 + 12 a 1 1 0 6 + 12 a 2 1 0 8 + 12 a 3 1 0 10 + ) = a 0 1 0 0 + a 1 1 0 2 20 a 0 1 0 2 + a 2 20 a 1 12 a 0 1 0 4 + a 3 20 a 2 12 a 1 1 0 6 + a 4 20 a 3 12 a 2 1 0 8 + \begin{aligned}\displaystyle S-\frac{20S}{10^2}-\frac{12S}{10^4} &= (\frac{a_0}{10^0}+\frac{a_1}{10^2}+\frac{a_2}{10^4}+\frac{a_3}{10^6}+\dots)-(\frac{20a_0}{10^2}+\frac{20a_1}{10^4}+\frac{20a_2}{10^6}+\frac{20a_3}{10^8}+\dots)-(\dfrac{12a_0}{10^4}+\dfrac{12a_1}{10^6}+\dfrac{12a_2}{10^8}+\dfrac{12a_3}{10^{10}}+\dots) \\ \displaystyle &=\frac{a_0}{10^0}+\frac{a_1}{10^2}-\frac{20a_0}{10^2}+\frac{a_2-20a_1-12a_0}{10^4}+\frac{a_3-20a_2-12a_1}{10^6}+\frac{a_4-20a_3-12a_2}{10^8}+\dots \end{aligned}

Since a n = 20 a n 1 + 12 a n 2 a_n=20a_{n-1}+12a_{n-2} for all positive integers n 2 n\geq2 , so

S 20 S 1 0 2 12 S 1 0 4 = a 0 1 0 0 + a 1 1 0 2 20 a 0 1 0 2 \displaystyle S-\frac{20S}{10^2}-\frac{12S}{10^4}=\frac{a_0}{10^0}+\frac{a_1}{10^2}-\frac{20a_0}{10^2}

and as a 0 = a 1 = 1 a_0=a_1=1 , we have

7988 S 10000 = 81 100 \displaystyle \frac{7988S}{10000}=\frac{81}{100}

S = 45 1997 \displaystyle \implies \sqrt{S}=\frac{45}{\sqrt{1997}}

a + b = 45 + 1997 = 2042 \boxed{\therefore a+b=45+1997=2042}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...