Infinite series

Algebra Level 3

1 + 4 5 + 7 5 2 + 10 5 3 + . . . . . . . . = ? 1 + \frac{4}{ 5 } + \frac{7}{ 5^2} + \frac{10}{5^3 } + ........ = ?

15 16 \frac{15}{16} 16 15 \frac{16}{15} 7 4 \frac{7}{4} 35 16 \frac{35}{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ikkyu San
Jul 13, 2015

Let S = 1 + 4 5 + 7 5 2 + 10 5 3 + ( 1 ) \begin{aligned}\begin{aligned}S=&\ 1+\dfrac45+\dfrac7{5^2}+\dfrac{10}{5^3}+\cdots\Rightarrow(1)\end{aligned}\end{aligned}

Multiplying with 1 5 \dfrac15 in equation ( 1 ) (1) ,

1 5 S = 1 5 + 4 5 2 + 7 5 3 + ( 2 ) \begin{aligned}\begin{aligned}\dfrac15S=&\ \dfrac15+\dfrac4{5^2}+\dfrac7{5^3}+\cdots\Rightarrow(2)\end{aligned}\end{aligned}

Equation ( 1 ) (1) - Equation ( 2 ) (2) ,

4 5 S = 1 + ( 3 5 + 3 5 2 + 3 5 3 + ) 4 5 S = 1 + ( 3 5 1 1 5 ) 4 5 S = 1 + 3 4 4 5 S = 7 4 S = 7 4 × 5 4 = 35 16 \begin{aligned}\begin{aligned}\dfrac45S=&\ 1+\left(\dfrac35+\dfrac3{5^2}+\dfrac3{5^3}+\cdots\right)\\\dfrac45S=&\ 1+\left(\dfrac{\frac35}{1-\frac15}\right)\\\dfrac45S=&\ 1+\dfrac34\\\dfrac45S=&\ \dfrac74\\S=&\ \dfrac74\times\dfrac54=\boxed{\dfrac{35}{16}}\end{aligned}\end{aligned}

Sai Ram
Jul 13, 2015

I did it by simple logic.

The answer should be greater than the sum of first two terms , that is 1 1 and 4 / 5 4/5 , which is equal to 9 / 5 9/5

We can observe that none of the fractions in the given options are greater than 9 / 5 9/5 , except for 35 / 19 35/19 .

Therefore the required answer is 35 / 19 35/19 .

Jason Zou
Jun 30, 2015

We see that the sequence is an arithmetico-geometric series. Let the sum be S S . We have:

S = 1 + 4 5 + 7 5 2 + 10 5 3 + S=1+\frac{4}{5}+\frac{7}{5^2}+\frac{10}{5^3}+\ldots

S 5 = 1 5 + 4 5 2 + 7 5 3 + \frac{S}{5}=\frac{1}{5}+\frac{4}{5^2}+\frac{7}{5^3}+\ldots

Subtracting the two, we get:

4 S 5 = 1 + 3 5 + 3 5 2 + 3 5 3 + \frac{4S}{5}=1+\frac{3}{5}+\frac{3}{5^2}+\frac{3}{5^3}+\ldots

4 S 5 = 1 + 3 5 1 1 5 = 1 + 3 4 = 7 4 \frac{4S}{5}=1+\cfrac{\frac{3}{5}}{1-\frac{1}{5}}=1+\frac{3}{4}=\frac{7}{4}

We can multiply both sides by 5 4 \frac{5}{4} and get the desired sum of S = 35 16 S=\boxed{\frac{35}{16}}

King 12
Jul 16, 2020

The infinite sum is n = 1 3 n 2 5 n 1 = 3 n = 1 n 5 n 1 2 n = 1 1 5 n 1 \displaystyle\sum_{n=1}^\infty \dfrac{3n-2}{5^{n-1}}=3\displaystyle\sum_{n=1}^\infty\dfrac{n}{5^{n-1}}-2\displaystyle\sum_{n=1}^\infty\dfrac{1}{5^{n-1}} Now let's differentiate our best friend :-) : n = 0 x n = 1 1 x \displaystyle\sum_{n=0}^\infty x^n=\dfrac{1}{1-x} for x < 1 |x|<1 so ( n = 0 x n ) = n = 0 n x n 1 = n = 1 n x n 1 = 1 ( 1 x ) 2 \left(\displaystyle\sum_{n=0}^\infty x^{n}\right)'=\displaystyle\sum_{n=0}^\infty nx^{n-1}=\displaystyle\sum_{n=1}^\infty nx^{n-1}=\dfrac{1}{(1-x)^2} For x = 1 5 x=\dfrac{1}{5} we have n = 1 n 5 n 1 = 1 ( 1 1 5 ) 2 = 25 16 \displaystyle\sum_{n=1}^\infty\dfrac{n}{5^{n-1}}=\dfrac{1}{\left(1-\dfrac{1}{5}\right)^2}=\dfrac{25}{16} Hence n = 1 3 n 2 5 n 1 = 3 n = 1 n 5 n 1 2 n = 1 1 5 n 1 = 3 25 16 2 1 1 1 5 = 35 16 \displaystyle\sum_{n=1}^\infty \dfrac{3n-2}{5^{n-1}}=3\displaystyle\sum_{n=1}^\infty\dfrac{n}{5^{n-1}}-2\displaystyle\sum_{n=1}^\infty\dfrac{1}{5^{n-1}}=3\cdot\dfrac{25}{16}-2\cdot\dfrac{1}{1-\dfrac{1}{5}}=\dfrac{35}{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...