Infinite series as exponent

Calculus Level 2

e 1 2 1 4 + 1 6 = b \large e^{\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-{\cdots } }=\sqrt{b}

Enter b \lfloor b \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By Maclaurin's series ,

ln ( 1 + x ) = x x 2 2 + x 3 3 ln ( 1 + 1 ) = 1 1 2 + 1 3 e 1 2 1 4 + 1 6 = e 1 2 ( 1 1 2 + 1 3 ) = e 1 2 ln 2 = 2 \begin{aligned} \ln (1+x) & = x - \frac {x^2}2 + \frac {x^3}3 - \cdots \\ \implies \ln (1 + 1) & = 1 - \frac 12 + \frac 13 - \cdots \\ e^{\frac 12 - \frac 14 + \frac 16 - \cdots} & = e^{\frac 12 \left(1-\frac 12 + \frac 13 - \cdots \right)} = e^{\frac 12 \ln 2} = \sqrt 2 \end{aligned}

Therefore b = 2 = 2 \lfloor b \rfloor = \lfloor 2 \rfloor = \boxed 2 .

Rafsan Rcc
May 3, 2021

You could do this instead

ln 1 + x 2 = x 2 x 2 4 \frac{\ln{1+x}}{2}=\frac x2-\frac {x^2}{4} …

ln 1 + 1 2 = Required exponent = ln 2 \frac{\ln{1+1}}{2} = \text{Required exponent} = \ln{\sqrt 2}

Jason Gomez - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...