Infinite Series (Problem 1)

Calculus Level 1

Find the sum below.

n = 0 4 π 3 ( n + 1 ) ( n + 3 ) \sum_{n=0}^{\infty} \frac{4\pi}{3(n + 1)(n + 3)}


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Karan Chatrath
Jun 3, 2020

Consider the infinite series for all x < 1 \lvert x \rvert <1 :

1 1 x = n = 0 x n \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n

Integrating both sides from 0 0 to y y :

ln ( 1 y ) = n = 0 y n + 1 n + 1 -\ln(1-y) = \sum_{n=0}^{\infty} \frac{y^{n+1}}{n+1}

Multiplying both sides by y y :

y ln ( 1 y ) = n = 0 y n + 2 n + 1 -y\ln(1-y) = \sum_{n=0}^{\infty} \frac{y^{n+2}}{n+1}

Integrating both sides from 0 0 to 1 1 gives:

0 1 y ln ( 1 y ) d y = n = 0 1 ( n + 1 ) ( n + 3 ) -\int_{0}^{1}y\ln(1-y) \ dy = \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+3)}

Multiplying both sides by 4 π 3 \frac{4 \pi}{3} :

4 π 3 0 1 y ln ( 1 y ) d y = n = 0 4 π 3 ( n + 1 ) ( n + 3 ) -\frac{4 \pi}{3} \int_{0}^{1}y\ln(1-y) \ dy = \sum_{n=0}^{\infty} \frac{4 \pi}{3(n+1)(n+3)}

The steps required to evaluate the integral are provided below. The required answer is:

n = 0 4 π 3 ( n + 1 ) ( n + 3 ) = 4 π 3 0 1 y ln ( 1 y ) d y = π \boxed{\sum_{n=0}^{\infty} \frac{4 \pi}{3(n+1)(n+3)}=-\frac{4 \pi}{3} \int_{0}^{1}y\ln(1-y) \ dy = \pi}


Consider the indefinite integral:

I = y ln ( 1 y ) d y I=-\int y\ln(1-y) \ dy

Integrating by parts:

I = y 2 ln ( 1 y ) 2 y 2 2 ( 1 y ) d y I = -\frac{y^2 \ln(1-y)}{2} -\int \frac{y^2}{2(1-y)} \ dy I = y 2 ln ( 1 y ) 2 + 1 y 2 1 2 ( 1 y ) d y I = -\frac{y^2 \ln(1-y)}{2} + \int \frac{1-y^2 - 1}{2(1-y)} \ dy I = y 2 ln ( 1 y ) 2 + 1 + y 2 d y 1 2 ( 1 y ) d y I = -\frac{y^2 \ln(1-y)}{2} + \int \frac{1+y}{2} \ dy - \int \frac{1}{2(1-y)} \ dy I = y 2 ln ( 1 y ) 2 + y 2 + y 2 4 + ln ( 1 y ) 2 I =-\frac{y^2 \ln(1-y)}{2} + \frac{y}{2}+\frac{y^2}{4} + \frac{\ln(1-y)}{2} I = ( 1 y 2 ) ln ( 1 y ) 2 + y 2 + y 2 4 I = \frac{(1-y^2) \ln(1-y)}{2}+ \frac{y}{2}+\frac{y^2}{4}

Now consider the definite integral:

0 a y ln ( 1 y ) d y = ( 1 a 2 ) ln ( 1 a ) 2 + a 2 + a 2 4 -\int_{0}^{a} y\ln(1-y) \ dy = \frac{(1-a^2) \ln(1-a)}{2}+ \frac{a}{2}+\frac{a^2}{4}

lim a 1 0 a y ln ( 1 y ) d y = lim a 1 ( ( 1 a 2 ) ln ( 1 a ) 2 + a 2 + a 2 4 ) -\lim_{a \to 1^{-}} \int_{0}^{a} y\ln(1-y) \ dy = \lim_{a \to 1^{-}} \left( \frac{(1-a^2) \ln(1-a)}{2}+ \frac{a}{2}+\frac{a^2}{4} \right) 0 1 y ln ( 1 y ) d y = lim a 1 ( ( 1 a 2 ) ln ( 1 a ) 2 ) + 3 4 -\int_{0}^{1} y\ln(1-y) \ dy = \lim_{a \to 1^{-}} \left( \frac{(1-a^2) \ln(1-a)}{2}\right) + \frac{3}{4}

The only limit on the right-hand side can be evaluated as such:

lim a 1 ( 1 a 2 ) ln ( 1 a ) 2 = lim a 1 ln ( 1 a ) 2 1 a 2 \lim_{a \to 1^{-}} \frac{(1-a^2) \ln(1-a)}{2}=\lim_{a \to 1^{-}} \frac{ \ln(1-a)}{\frac{2}{1-a^2}}

Beyond this, point L'hopital's rule can be applied to prove that the above limit evaluates to zero.

Therefore: 0 1 y ln ( 1 y ) d y = 3 4 \boxed{-\int_{0}^{1} y\ln(1-y) \ dy = \frac{3}{4}}

@Karan Chatrath , can you please add the steps involving in integrating the function and fully show how did you get π \pi from the second part of your boxed final answer? It will be beneficial to me and everybody who attempts this question.

Log in to reply

I have edited my solution. Hope this helps.

Karan Chatrath - 1 year ago

Dude ,that's a hell of a solution well you can make the argument more elegant by using the Digamma function.Try Brilliant website for more details.

Aruna Yumlembam - 1 year ago

The given expression is equal to

2 π 3 ( n = 0 ( 1 n + 1 1 n + 3 ) ) \dfrac{2π}{3}\left (\displaystyle \sum_{n=0}^\infty \left (\frac{1}{n+1}-\frac{1}{n+3}\right )\right ) .

This telescopic sum reduces to 2 π 3 × 3 2 = π 3.14159 \dfrac{2π}{3}\times \dfrac{3}{2}=π\approx \boxed {3.14159} .

Alak Bhattacherya both the sums diverges if you calculated them separately.Please use a single sigma notation with brackets surrounding the inner input.

Aruna Yumlembam - 1 year ago

Log in to reply

You're absolutely right :), editing.

Hi Mr. Alak, can you please elaborate on how you got the telescopic sum to be 3 2 \dfrac{3}{2} ?

Mahdi Raza - 1 year ago

Log in to reply

k = 0 n 1 n + 1 1 n + 3 = k = 1 n + 1 1 n k = 3 n + 3 1 n = 1 + 1 2 1 n + 2 1 n + 3 \displaystyle\sum_{k=0}^{n} \dfrac{1}{n+1}-\dfrac{1}{n+3} = \displaystyle\sum_{k=1}^{n+1} \dfrac{1}{n} - \displaystyle\sum_{k=3}^{n+3} \dfrac{1}{n} = 1 + \dfrac{1}{2} - \dfrac{1}{n+2}-\dfrac{1}{n+3}

Then let n n goes to \infty .

Théo Leblanc - 1 year ago

S = n = 0 4 π 3 ( n + 1 ) ( n + 3 ) = 4 π 3 n = 1 1 n ( n + 2 ) = 2 π 3 n = 1 ( 1 n 1 n + 2 ) = 2 π 3 ( 1 1 + 1 2 ) = π 3.142 \begin{aligned} S & = \sum_\blue{n=0}^\infty \frac {4\pi}{3(n+1)(n+3)} \\ & = \frac {4\pi}3 \sum_\red{n=1}^\infty \frac 1{n(n+2)} \\ & = \frac {2\pi}3 \sum_\red{n=1}^\infty \left(\frac 1n - \frac 1{n+2} \right) \\ & = \frac {2\pi}3 \left(\frac 11 + \frac 12 \right) \\ & = \pi \approx \boxed{3.142} \end{aligned}

The first 5 5 digits of π \pi only are needed

Therefore, the answer is 3.1415 π 3.1415 \approx \pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...