Infinite Slices, Finite Values

Calculus Level 4

f ( x ) = 3 x 25 x \large f\left( x \right) =\frac { 3x }{ \sqrt { 25-x } }

Find the area bounded by the curve f ( x ) f\left( x \right) , the vertical asymptote for f ( x ) f\left( x \right) , and the x x -axis.


The answer is 500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The area bounded by the curve f ( x ) f(x) , the y y - axis, the vertical assymptote for f ( x ) f(x) (which is ( x = 25 ) (x = 25) ) and the x x - axis is: 0 25 x 25 x d x = \int_{0}^{25} \frac{x}{\sqrt{25 -x}} dx = Integrating by parts = [ 2 x ( 25 x ) ] 0 25 + 2 0 25 25 x d x = 2 0 25 25 x d x = = \left[-2x \cdot (\sqrt{25 - x})\right]_{0}^{25} + 2 \cdot \int_{0}^{25} \sqrt{25 -x} dx = 2 \cdot \int_{0}^{25} \sqrt{25 -x} dx = = [ 4 3 ( 25 x ) 3 2 ] 0 25 = 500 3 = A 3 A = 500 = \left[\frac{-4}{3} \cdot (25 - x)^{\frac{3}{2}}\right]_0^{25} = \frac{500}{3} = A \Rightarrow 3A = \boxed{500}

Harsh Khatri
Mar 9, 2016

Required Area is:

0 25 x 25 x d x \displaystyle \int_{0}^{25} \frac{x}{\sqrt{25-x}} dx

0 25 x 25 + 25 25 x d x \displaystyle \int_{0}^{25} \frac{x-25+25}{\sqrt{25-x}} dx

0 25 1 × 25 x + 25 25 x d x \displaystyle \int_{0}^{25} -1 \times \sqrt{25-x} + \frac{25}{\sqrt{25-x}} dx

1 × 1 × 2 3 × ( ( 25 x ) 3 ) 0 25 + 25 × ( 1 ) × 2 × ( 25 x ) 0 25 \displaystyle \Rightarrow -1\times \frac{-1\times2}{3}\times \big( (\sqrt{25-x})^3 \big)_{0}^{25} + 25\times(- 1)\times2\times \big( \sqrt{25-x} \big)_{0}^{25}

250 3 + 250 \displaystyle \Rightarrow \frac{-250}{3} + 250

A = 500 3 \displaystyle \Rightarrow A = \frac{500}{3}

3 A = 500 \displaystyle \Rightarrow 3A = \boxed{500}

Arre Raj
Mar 18, 2016

The vertical asymptote of f(x) is found by setting the denominator to 0 and solving for values of x; it follows then that the area is bounded between x=0 and x=25.

Thus, our integral takes the following form:

3 0 25 x 25 x d x \displaystyle 3\int_0^{25} \frac{x}{ \sqrt{25 - x}} dx

Using the substitution u = 25 x u = 25 - x , we can state that x = u 25 x = u - 25 and d x = d u dx = - du . Thus we can transform the integral like so;

3 25 0 25 u u d u = 3 25 0 25 u 1 2 u 2 3 d u \displaystyle -3\int_{25}^{0} \frac{25-u}{ \sqrt{u}} du = \displaystyle -3\int_{25}^{0} 25u^{-\frac{1}{2}} - u^{\frac{2}{3}} du

Solving this simple integral gives us the following;

3 [ 50 u 2 3 u 3 2 ] 25 0 = 3 ( 0 ( 250 250 3 ) = 500 -3\left[ 50\sqrt{u} - \frac{2}{3}u^{\frac{3}{2}} \right]_{25}^0 \\ = -3(0 -( 250 - \frac{250}{3}) = 500

Hence, the area is 500 \boxed{500} .

This is my first provided solution on Brilliant! Let me know what you think. :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...