Infinite solutions?

Algebra Level 3

x + 8 + 6 x 1 x + 3 + 4 x 1 = 1 \sqrt{ x+8+6\sqrt{x-1} }-\sqrt{ x+3+4\sqrt{x-1}}=1

If the solution set for the above equation for x R x\in \mathbb{R} is in the for [ a , ) [a,\infty) , find a a .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 30, 2016

x + 8 + 6 x 1 = ( x 1 ) + ( 9 ) + 2 3 x 1 = ( x 1 + 3 ) 2 x + 3 + 4 x 1 = ( x 1 ) + ( 4 ) + 2 2 x 1 = ( x 1 + 2 ) 2 x 1 + 3 x 1 2 = 1 x [ 1 , ) Domain of our original equation \quad x+8+6\sqrt{x-1} = (x-1)+(9)+2\cdot3\cdot\sqrt{x-1} = \left( \sqrt{x-1}+3 \right)^2 \\ \quad x+3+4\sqrt{x-1} = (x-1)+(4)+2\cdot2\cdot\sqrt{x-1} = \left( \sqrt{x-1}+2 \right)^2 \\ \quad \implies \sqrt{x-1}+3-\sqrt{x-1}-2 = \boxed{1} \\ \quad \boxed{x \in \left[ 1 , \infty \right)} \quad \quad \color{#20A900}{ \rightarrow \text{ Domain of our original equation}}

Good question!

Deepak Kumar - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...