If the sum is equal to -a/b+cln(2),where a,b,c are positive integers and a/b is expressed in simplest form,find the value of 11a+13b+17c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
n = 2 ∑ ∞ 8 n 3 − 2 n 1 = ( 2 1 ) n = 2 ∑ ∞ [ n ( 2 n − 1 ) ( 2 n + 1 ) 1 ] = ( 4 1 ) n = 2 ∑ ∞ [ n ( 2 n − 1 ) 1 − n ( 2 n + 1 ) 1 ] = ( 4 1 ) n = 2 ∑ ∞ [ ( 2 n − 1 ) 2 − n 1 ] − [ n 1 − ( 2 n + 1 ) 2 ] = ( 4 1 ) n = 2 ∑ ∞ [ ( 2 n − 1 ) 2 − n 2 + ( 2 n + 1 ) 2 ] = ( 2 1 ) n = 2 ∑ ∞ [ ( 2 n − 1 ) 1 − n 1 + ( 2 n + 1 ) 1 ] ( 2 1 ) [ n = 2 ∑ ∞ ( 2 n − 1 ) 1 − n = 2 ∑ ∞ n 1 + n = 2 ∑ ∞ ( 2 n + 1 ) 1 ] ( 2 1 ) [ n = 1 ∑ ∞ ( 2 n + 1 ) 1 − n = 2 ∑ ∞ n 1 + n = 2 ∑ ∞ ( 2 n + 1 ) 1 ] ( 2 1 ) [ 3 1 + 2 n = 2 ∑ ∞ ( 2 n + 1 ) 1 − n = 2 ∑ ∞ n 1 ] ( 2 1 ) [ 3 1 + 2 ( n = 2 ∑ ∞ ( 2 n + 1 ) 1 − 2 1 n = 2 ∑ ∞ n 1 ) ] 1 − 2 1 + 3 1 − 4 1 + 5 1 − 6 1 + . . . = n = 1 ∑ ∞ n ( − 1 ) n − 1 = l o g e 2 ( 2 1 ) [ 3 1 + 2 ( n = 2 ∑ ∞ ( 2 n + 1 ) 1 − 2 1 n = 2 ∑ ∞ n 1 ) = ( 2 1 ) [ 3 1 + 2 ( l o g e 2 − 6 5 ) ] ( 2 1 ) [ 3 1 + ( 2 l o g e 2 − 3 5 ) ] ( 2 1 ) [ ( 2 l o g e 2 − 3 4 ) ] → ( l o g e 2 − 3 2 )