Infinite sum

Algebra Level 2

25 n = 0 4 5 n = ? \large 25\sum_{n=0}^{\infty}{\dfrac{4}{5^n}}= \, ?


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akeel Howell
Jan 24, 2017

Let n = 0 4 5 n = a a = 4 5 0 + 4 5 1 + 4 5 2 + 4 5 3 + So 5 a = 20 + 4 5 0 + 4 5 1 + 4 5 2 + 4 5 3 + 5 a = 20 + a a = 5 25 a = 25 ( 5 ) = 125 \displaystyle{\sum_{n=0}^{\infty}{\dfrac{4}{5^n}} = a \implies a = \dfrac{4}{5^0}+\dfrac{4}{5^1}+\dfrac{4}{5^2}+\dfrac{4}{5^3}+\cdots \\ \text{So } 5a = 20+\dfrac{4}{5^0}+\dfrac{4}{5^1}+\dfrac{4}{5^2}+\dfrac{4}{5^3}+\cdots \implies 5a = 20+a \implies a = 5 \\ \therefore 25a = 25(5) = \boxed{125}} .

Chew-Seong Cheong
Jan 24, 2017

Relevant wiki: Geometric Progression Sum

S = 25 n = 0 4 5 n = 100 n = 0 ( 1 5 ) n Infinite GP: n = 0 r n = 1 1 r , r < 1 = 100 ( 1 1 1 5 ) = 125 \begin{aligned} S & = 25 \sum_{n=0}^\infty \frac 4{5^n} \\ & = 100 {\color{#3D99F6} \sum_{n=0}^\infty \left(\frac 15 \right)^n} & \small \color{#3D99F6} \text{Infinite GP: } \sum_{n=0}^\infty r^n = \frac 1{1-r}, \ |r| < 1 \\ & = 100 {\color{#3D99F6} \left(\frac 1{1-\frac 15}\right)} \\ & = \boxed{125} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...