Infinite Sum...

Calculus Level 4

n = 1 n 3 2 n + 1 \large \sum_{n=1}^{\infty} \dfrac{n^3}{2^{n+1}}

Evaluate the infinite sum above to 3 decimal places.


The answer is 13.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Apr 1, 2018

By geometric progression formula:

n = 1 x n = x 1 x \large \displaystyle \sum_{n=1}^{\infty} x^n = \frac{x}{1-x}

Differentiating both sides with respect to x x and multiplying it by x x on both sides:

n = 1 n x n = x ( 1 x ) 2 \large \displaystyle \sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}

Differentiating both sides with respect to x x and multiplying it by x x on both sides again:

n = 1 n 2 x n = x + x 2 ( 1 x ) 3 \large \displaystyle \sum_{n=1}^{\infty} n^2 x^n = \frac{x + x^2}{(1-x)^3}

Differentiating both sides with respect to x x and multiplying it by x x on both sides again:

n = 1 n 3 x n = x + 4 x 2 + x 3 ( 1 x ) 4 \large \displaystyle \sum_{n=1}^{\infty} n^3 x^n = \frac{x + 4x^2 + x^3}{(1-x)^4}

Now:

S = n = 1 n 3 ( 1 2 ) n + 1 \large \displaystyle S = \sum_{n=1}^{\infty} n^3 \left ( \frac12 \right ) ^{n+1}

S = 1 2 n = 1 n 3 ( 1 2 ) n \large \displaystyle S = \frac12 \cdot \sum_{n=1}^{\infty} n^3 \left ( \frac12 \right ) ^n

S = 1 2 ( 1 2 ) + 4 ( 1 2 ) 2 + ( 1 2 ) 3 ( 1 2 ) 4 \large \displaystyle S = \frac12 \cdot \frac{ \left ( \frac12 \right ) + 4 \left ( \frac12 \right ) ^2 + \left ( \frac12 \right ) ^3}{ \left ( \frac12 \right ) ^4 }

S = 13 \color{#3D99F6} \boxed{ \large \displaystyle S = 13}

Consider the following:

S 0 = n = 1 1 2 n + 1 = 1 4 n = 0 1 2 n = 1 4 ( 1 1 1 2 ) = 1 2 \begin{aligned} S_0 & = \sum_{\color{#3D99F6}n=1}^\infty \frac 1{2^{n+1}} = \frac 14 \sum_{\color{#D61F06}n=0}^\infty \frac 1{2^n} = \frac 14\left(\frac 1{1-\frac 12}\right) = \frac 12\end{aligned}

S 1 = n = 1 n 2 n + 1 = n = 0 n 2 n + 1 = n = 0 n + 1 2 n + 2 = 1 2 n = 0 n + 1 2 n + 1 = 1 2 S 1 + 1 2 n = 0 1 2 n + 1 = 1 2 S 1 + 1 4 n = 0 1 2 n = 1 2 S 1 + S 0 = 2 S 0 = 1 \begin{aligned} S_1 & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{2^{n+1}} = \sum_{\color{#D61F06}n=0}^\infty \frac n{2^{n+1}} = \sum_{\color{#D61F06}n=0}^\infty \frac {n+1}{2^{n+2}} = \frac 12 \sum_{\color{#D61F06}n=0}^\infty \frac {n+1}{2^{n+1}} \\ & = \frac 12 S_1 + \frac 12 \sum_{\color{#D61F06}n=0}^\infty \frac 1{2^{n+1}} = \frac 12 S_1 + \frac 14 \sum_{\color{#D61F06}n=0}^\infty \frac 1{2^n} \\ & = \frac 12 S_1 + S_0 = 2S_0 = 1 \end{aligned}

S 2 = n = 1 n 2 2 n + 1 = n = 0 n 2 2 n + 1 = n = 0 ( n + 1 ) 2 2 n + 2 = 1 2 n = 0 n 2 + 2 n + 1 2 n + 1 = 1 2 S 2 + S 1 + S 0 = 2 S 1 + 2 S 0 = 6 S 0 = 3 \begin{aligned} S_2 & = \sum_{\color{#3D99F6}n=1}^\infty \frac {n^2}{2^{n+1}} = \sum_{\color{#D61F06}n=0}^\infty \frac {n^2}{2^{n+1}} = \sum_{\color{#D61F06}n=0}^\infty \frac {(n+1)^2}{2^{n+2}} = \frac 12 \sum_{\color{#D61F06}n=0}^\infty \frac {n^2+2n+1}{2^{n+1}} \\ & = \frac 12 S_2 + S_1 + S_0 = 2S_1 + 2S_0 = 6S_0 = 3 \end{aligned}

S 3 = n = 1 n 3 2 n + 1 = n = 0 n 3 2 n + 1 = n = 0 ( n + 1 ) 3 2 n + 2 = 1 2 n = 0 n 3 + 3 n 2 + 3 n + 1 2 n + 1 = 1 2 S 3 + 3 2 S 2 + 3 2 S 1 + S 0 = 3 S 2 + 3 S 1 + 2 S 0 = 26 S 0 = 13 \begin{aligned} S_3 & = \sum_{\color{#3D99F6}n=1}^\infty \frac {n^3}{2^{n+1}} = \sum_{\color{#D61F06}n=0}^\infty \frac {n^3}{2^{n+1}} = \sum_{\color{#D61F06}n=0}^\infty \frac {(n+1)^3}{2^{n+2}} = \frac 12 \sum_{\color{#D61F06}n=0}^\infty \frac {n^3+3n^2+3n+1}{2^{n+1}} \\ & = \frac 12 S_3 + \frac 32 S_2 + \frac 32 S_1 + S_0 = 3S_2 + 3S_1 + 2S_0 = 26S_0 = \boxed{13} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...