Infinite Sum Practice (3)

Calculus Level 5

Evaluate

S = 2 3 e 3 + 4 5 e 5 + 6 7 e 7 + 8 9 e 9 + S=\dfrac{2}{3 \cdot e^3}+\dfrac{4}{5 \cdot e^5}+\dfrac{6}{7 \cdot e^7}+\dfrac{8}{9 \cdot e^9}+\cdots


The answer is 0.0395.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Nov 2, 2014

We have S = n = 1 2 n 2 n + 1 e ( 2 n + 1 ) \large \displaystyle S=\sum _{ n=1 }^{ \infty }{ \frac { 2n }{ 2n+1 } { e }^{ -(2n+1) } }

Rewriting it we have :

S = n = 1 e ( 2 n + 1 ) n = 1 e ( 2 n + 1 ) 2 n + 1 = S 1 S 2 \large \displaystyle S=\sum _{ n=1 }^{ \infty }{ { e }^{ -(2n+1) } } -\sum _{ n=1 }^{ \infty }{ \frac { { e }^{ -(2n+1) } }{ 2n+1 } }={S}_{1}-{S}_{2}

S 1 {S}_{1} is a infinite G.P. which can be found easily and it comes out to be :

S 1 = 1 e ( e 2 1 ) \large {S}_{1}=\frac{1}{e({e}^2-1)}

We know that :

n = 1 x 2 n = x 2 1 x 2 \large \displaystyle \sum _{ n=1 }^{ \infty }{ { x }^{ 2n } } =\frac { { x }^{ 2 } }{ 1-{ x }^{ 2 } }

Integrating both sides we get :

n = 1 x 2 n + 1 2 n + 1 = 1 2 l n ( 1 + x 1 x ) x + C \large \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { { x }^{ 2n+1 } }{ 2n+1 } } =\frac { 1 }{ 2 } ln(\frac { 1+x }{ 1-x } )-x+C

Put x = 0 x=0 to get C = 0 C=0 hence :

n = 1 x 2 n + 1 2 n + 1 = 1 2 l n ( 1 + x 1 x ) x \large \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { { x }^{ 2n+1 } }{ 2n+1 } } =\frac { 1 }{ 2 } ln(\frac { 1+x }{ 1-x } )-x

Put x = 1 e x=\frac{1}{e} to get S 2 {S}_{2} as :

S 2 = n = 1 x 2 n + 1 2 n + 1 = 1 2 l n ( e + 1 e 1 ) 1 e \large \displaystyle {S}_{2}=\sum _{ n=1 }^{ \infty }{ \frac { { x }^{ 2n+1 } }{ 2n+1 } } =\frac { 1 }{ 2 } ln(\frac { e+1 }{ e-1 } )-\frac { 1 }{ e }

Finally we get :

S = 1 e ( e 2 1 ) ( 1 2 l n ( e + 1 e 1 ) 1 e ) \large S=\frac { 1 }{ e({ e }^{ 2 }-1) } -(\frac { 1 }{ 2 } ln(\frac { e+1 }{ e-1 } )-\frac { 1 }{ e } )

Simplifying this we get :

S = e ( e 2 1 ) 1 2 l n ( e + 1 e 1 ) \large S=\frac { e }{ ({ e }^{ 2 }-1) } -\frac { 1 }{ 2 } ln(\frac { e+1 }{ e-1 } )

did the exact same save that I came to the fact that n = 1 x 2 n + 1 2 n + 1 = 1 2 ln ( 1 + x 1 x ) x \sum _{ n=1 }^{ \infty }{ \frac { { x }^{ 2n+1 } }{ 2n+1 } } \quad =\quad \frac { 1 }{ 2 } \ln { (\frac { 1+x }{ 1-x } } )\quad -\quad x in a different manner. I did it like this -

n = 1 x n n = ln ( 1 x ) \sum _{ n=1 }^{ \infty }{ \frac { { x }^{ n } }{ n } } \quad =\quad -\ln { (1-x } )\quad after integrating this - n = 0 x n = 1 1 x \sum _{ n=0 }^{ \infty }{ { x }^{ n } } \quad =\quad \frac { 1 }{ 1-x } \quad

Also, n = 0 x 2 n + 1 n = 1 x 2 n = ln ( 1 + x ) \sum _{ n=0 }^{ \infty }{ { x }^{ 2n+1 } } -\sum _{ n=1 }^{ \infty }{ { x }^{ 2n } } \quad =\quad \ln { (1+x) } \quad

Adding both these and then some bashing.

Kartik Sharma - 6 years, 6 months ago

Log in to reply

Of course yours is better! And yes nice question!

Kartik Sharma - 6 years, 6 months ago

This is how I originally thought, while making the question that is..

Pratik Shastri - 6 years, 6 months ago

Log in to reply

Hmm but Ronak's way is better, I think. What say?

Kartik Sharma - 6 years, 6 months ago

You might like to use \displaystyle before \sum.

  • 1 2 n = \sum_{1}^{2} n= \sum

  • 1 2 n = \displaystyle\sum_{1}^{2} n= \displaystyle\sum

Pranjal Jain - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...