Infinite Sum Practice

Calculus Level 3

Find the value of S = cos 0 e 0 0 ! + cos 1 e 1 1 ! + cos 2 e 2 2 ! + S= \dfrac{\cos 0}{e^0 \cdot 0!}+ \dfrac{\cos 1}{e^1 \cdot 1!}+\dfrac{\cos 2}{e^2 \cdot 2!}+ \cdots

Details and Assumptions \textbf{Details and Assumptions}

  • In cos n \cos n , n n is considered to be in radians \textbf{radians} .


The answer is 1.161.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pratik Shastri
Oct 4, 2014

We will use the Euler's formula ( e i θ = cos θ + i sin θ e^{i\theta}=\cos \theta+i\sin \theta ) a good many times while arriving at the desired closed form.

We will also use the Maclaurin series for e x n = 0 x n n ! = e x e^x \ \ \rightarrow \ \ \displaystyle\sum_{n=0}^{\infty} \dfrac{x^n}{n!}=e^x .

Let us begin our solution \rightarrow

S = cos 0 e 0 0 ! + cos 1 e 1 1 ! + cos 2 e 2 2 ! + = n = 0 cos n e n n ! = { n = 0 e i n e n n ! } = { n = 0 e i n n n ! } = { n = 0 ( e i 1 ) n n ! } = { e e i 1 } = { e e i / e } = { e ( cos 1 + i sin 1 ) / e } = { e ( cos 1 ) / e e i ( ( sin 1 ) / e ) } = { e ( cos 1 ) / e ( cos ( sin 1 e ) + i sin ( sin 1 e ) ) } = e ( cos 1 ) / e cos ( sin 1 e ) 1.16 \begin{aligned} S &= \dfrac{\cos 0}{e^0 \cdot 0!}+ \dfrac{\cos 1}{e^1 \cdot 1!}+\dfrac{\cos 2}{e^2 \cdot 2!}+ \cdots \cdots \\ &= \displaystyle\sum_{n=0}^{\infty} \dfrac{\cos n}{e^n \cdot n!}\\ &= \Re \left\{ \displaystyle\sum_{n=0}^{\infty} \dfrac{e^{in}}{e^n \cdot n!}\right\}\\ &= \Re \left\{ \displaystyle\sum_{n=0}^{\infty} \dfrac{e^{in-n}}{n!}\right\}\\ &=\Re \left\{ \displaystyle\sum_{n=0}^{\infty} \dfrac{\left(e^{i-1}\right)^n}{n!}\right\}\\ &=\Re \left\{e^{e^{i-1}}\right\}\\ &=\Re \left\{e^{e^i/e}\right\}\\ &=\Re \left\{e^{(\cos 1+i\sin 1)/e}\right\}\\ &=\Re \left\{e^{(\cos 1)/e} \cdot e^{i((\sin 1)/e)}\right\}\\ &= \Re \left\{{e^{(\cos 1)/e}}\left(\cos \left(\dfrac{\sin 1}{e}\right)+i\sin \left(\dfrac{\sin 1}{e}\right)\right)\right\}\\ &= e^{(\cos 1)/e} \cos \left(\dfrac{\sin 1}{e}\right)\\ &\approx \boxed{1.16} \end{aligned}

really awesome solution

Tejas Suresh - 6 years, 8 months ago

Same as I did

Ronak Agarwal - 6 years, 8 months ago

+1 Exactly the same as what I did.

A Former Brilliant Member - 6 years, 8 months ago

What's the fancy R? Sorry if this is a dumb question XD

Trevor Arashiro - 6 years, 8 months ago

Log in to reply

That R denotes the real part

Kuang-Lin Pan - 6 years, 8 months ago

@Trevor Arashiro Real part of the expression inside the braces

Pratik Shastri - 6 years, 8 months ago

Nice solution

Sparsh Sarode - 4 years, 4 months ago

What about imaginary part??

Dhruv Joshi - 4 years, 2 months ago

Log in to reply

The imaginary part of n = 0 e i n e n n ! \displaystyle\sum_{n=0}^{\infty}\dfrac{e^{in}}{e^n \cdot n!} will be equal to n = 0 sin n e n n ! \displaystyle\sum_{n=0}^{\infty}\dfrac{\sin n}{e^n \cdot n!}

Pratik Shastri - 4 years, 2 months ago

This is so awesome!

I will keep this trick of "changing into exponent using Euler's formula and taking the real part" in mind

Bostang Palaguna - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...