Infinite sum question

Calculus Level 4

1 3 3 1 + 2 3 3 2 + 3 3 3 3 + 4 3 3 4 + \large \dfrac{1^3}{3^1} + \dfrac{2^3}{3^2} + \dfrac{3^3}{3^3} + \dfrac{4^3}{3^4} + \cdots

If the series above is equal to p q \dfrac pq , where p p and q q are coprime positive integers, find p + q p+q .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
May 9, 2016

n = 1 n 3 x n = x ( x 2 + 4 x + 1 ) ( 1 x ) 4 \sum_{n=1}^{\infty}n^3x^n=\frac{x(x^2+4x+1)}{(1-x)^4} for x < 1 |x|<1 . For x = 1 3 x=\frac{1}{3} this gives 33 8 \frac{33}{8} , and the answer is 41 \boxed{41}

First Last
May 9, 2016

S = n = 1 n 3 3 n \displaystyle S = \sum_{n=1}^{\infty}\frac{n^3}{3^n}

S ( 1 1 3 ) = 1 3 + 2 3 1 3 3 n + 1 + . . . = 1 3 + n = 1 ( n + 1 ) 3 n 3 3 n + 1 = \displaystyle S(1-\frac{1}{3}) = \frac{1}{3} + \frac{2^3-1^3}{3^{n+1}} + ... = \frac{1}{3}+\sum_{n=1}^{\infty}\frac{(n+1)^3-n^3}{3^{n+1}} =

1 3 + n = 1 n 2 3 n + n 3 n + 1 3 n + 1 \displaystyle\frac{1}{3} + \sum_{n=1}^{\infty}\frac{n^2}{3^n} + \frac{n}{3^n} + \frac{1}{3^{n+1}}

Following a similar process with n = 1 n 2 3 n \displaystyle\sum_{n=1}^{\infty}\frac{n^2}{3^n} results in 3 2 ( 1 3 + n = 1 2 n 3 n + 1 + 1 3 n + 1 ) = \displaystyle\frac{3}{2}( \frac{1}{3} + \sum_{n=1}^{\infty}\frac{2n}{3^{n+1}} + \frac{1}{3^{n+1}}) =

3 2 ( 1 3 + 1 2 + 1 6 ) = 1.5 \displaystyle\frac{3}{2}( \frac{1}{3}+ \frac{1}{2}+\frac{1}{6} ) = 1.5

In doing so we see that n = 1 n 3 n = 3 4 \displaystyle\sum_{n=1}^{\infty}\frac{n}{3^n} = \frac{3}{4} and

n = 1 1 3 n + 1 = 1 6 \displaystyle\sum_{n=1}^{\infty}\frac{1}{3^{n+1}} = \frac{1}{6}

2 3 S = 1 3 + 3 2 + 3 4 + 1 6 \displaystyle\frac{2}{3}S = \frac{1}{3} + \frac{3}{2} + \frac{3}{4} + \frac{1}{6}

S = 33 8 \displaystyle S = \boxed{\frac{33}{8}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...