Infinite sum with golden number

Calculus Level 4

Evaluate

S = m = 1 n = 1 m 2 n φ m ( n φ m + m φ n ) \large S=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \frac{m^2n}{\varphi^m\left(n\varphi^m+m\varphi^n\right)}

Notation: φ = 1 + 5 2 \varphi=\dfrac{1+\sqrt5}{2} denotes the golden ratio .


The answer is 8.972.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We may swap the order of summation and rename the dummy variables to get S = m = 1 n = 1 m n 2 φ n ( n φ m + m φ n ) S=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{mn^2}{\varphi^n\left(n\varphi^m+m\varphi^n\right)} Thus, 2 S = S + S = m = 1 n = 1 m n n φ m + m φ n ( m φ m + n φ n ) = m = 1 n = 1 m n φ m φ n = ( m = 1 m φ m ) 2 2S=S+S=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{mn}{n\varphi^m+m\varphi^n}\left(\dfrac{m}{\varphi^m}+\dfrac{n}{\varphi^n}\right)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \dfrac{mn}{\varphi^m\varphi^n}=\left(\sum_{m=1}^{\infty} \dfrac{m}{\varphi^m}\right)^2 For x < 1 |x|<1 , we have n = 1 n x n = x d d x n = 0 x n = x ( 1 1 x ) = x ( 1 x ) 2 \sum_{n=1}^{\infty} nx^n=x\cdot\dfrac{d}{dx} \sum_{n=0}^{\infty} x^n=x\cdot\left(\dfrac{1}{1-x}\right)=\dfrac{x}{(1-x)^2} hence 2 S = ( n = 1 n φ n ) 2 = ( φ 1 ( 1 φ 1 ) 2 ) 2 = φ 2 ( φ 1 ) 4 2S=\left(\sum_{n=1}^{\infty} n\varphi^{-n}\right)^2=\left(\dfrac{\varphi^{-1}}{\left(1-\varphi^{-1}\right)^2}\right)^2=\dfrac{\varphi^2}{(\varphi-1)^4} so S = φ 2 2 ( φ 1 ) 4 8.972 S=\dfrac{\varphi^2}{2(\varphi-1)^4}\approx \boxed{8.972}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...