Infinite sum with missing terms

Calculus Level pending

1 + 1 2 1 4 1 5 + 1 7 + 1 8 1 10 1 11 + 1 13 + 1 14 . . . 1+\frac{1}{2}-\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{8}-\frac{1}{10}-\frac{1}{11}+\frac{1}{13}+\frac{1}{14} -...

The sum above can be expressed in the form a π b c \dfrac{a\pi}{b^c} , where a a and b b are positive coprime integers.

What is the value of a b c abc ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the following Maclaurin series :

ln ( 1 x ) = x + x 2 2 + x 3 3 + x 4 4 + x 5 5 + x 6 6 + ln ( 1 e π 3 i ) = e π 3 i + e 2 π 3 i 2 + e π i 3 + e 4 π 3 i 4 + e 5 π 3 i 5 + e 2 π i 6 + = 1 2 + 3 2 i + 1 2 + 3 2 i 2 + 1 + 0 i 3 + 1 2 3 2 i 4 + 1 2 3 2 i 5 + 1 + 0 i 6 + \begin{aligned} - \ln (1-x) & = x + \frac {x^2}2 + \frac {x^3}3 + \frac {x^4}4 + \frac {x^5}5 + \frac {x^6}6 + \cdots \\ - \ln \left(1- e^{\frac \pi 3i} \right) & = e^{\frac \pi 3i} + \frac {e^{\frac {2\pi}3i}}2 + \frac {e^{\pi i}}3 + \frac {e^{\frac {4\pi}3i}}4 + \frac {e^{\frac {5\pi}3i}}5 + \frac {e^{2\pi i}}6 + \cdots \\ & = \frac 12 + \frac {\sqrt 3}2i + \frac {-\frac 12 + \frac {\sqrt 3}2i}2 + \frac {-1+0i}3 + \frac {-\frac 12-\frac {\sqrt 3}2i}4 + \frac {\frac 12 - \frac {\sqrt 3}2i}5 + \frac {1+0i}6 + \cdots \end{aligned}

( 2 3 ln ( 1 e π 3 i ) ) = 1 + 1 2 1 4 1 5 + 1 7 + 1 8 1 10 1 11 + = 2 3 ( ln ( 1 1 2 3 2 i ) ) = 2 3 ( ln ( 1 2 3 2 i ) ) = 2 3 ( ln ( e π 3 i ) ) = 2 π 3 3 = 2 π 3 3 2 \begin{aligned} \implies \Im \left(-\frac 2{\sqrt 3} \ln \left(1- e^{\frac \pi 3i} \right) \right) & = 1 + \frac 12 - \frac 14 - \frac 15 + \frac 17 + \frac 18 - \frac 1{10} - \frac 1{11} + \cdots \\ & = - \frac 2{\sqrt 3}\Im \left(\ln \left(1-\frac 12 - \frac {\sqrt 3}2i \right) \right) \\ & = - \frac 2{\sqrt 3}\Im \left(\ln \left(\frac 12 - \frac {\sqrt 3}2i \right) \right) \\ & = - \frac 2{\sqrt 3}\Im \left(\ln \left(e^{-\frac \pi 3i} \right) \right) \\ & = \frac {2\pi}{3\sqrt 3} = \frac {2\pi}{3^\frac 32} \end{aligned}

Therefore, a b c = 2 × 3 × 3 2 = 9 abc = 2 \times 3 \times \dfrac 32 = \boxed 9 .


Notation: ( ) \Im(\cdot) denotes the imaginary part function.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...