Infinite sums and products 3 (11)

Calculus Level 5

1 1 2 3 2 + 1 3 2 5 2 + 1 5 2 7 2 + \large \dfrac1{1^2 \cdot 3^2} + \dfrac1{3^2 \cdot 5^2} + \dfrac1{5^2 \cdot 7^2} + \cdots

If the value of the series above is equal to π A + B C \dfrac{\pi^A + B}{C} , where A , B A,B and C C are integers, find the value of A + B + C A+B+C .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We can write the sum as n = 1 1 ( 2 n 1 ) 2 ( 2 n + 1 ) 2 \displaystyle{\sum^{\infty}_{n=1}\frac{1}{(2n-1)^2(2n+1)^2}} .Applying partial fraction decomposition gives us: n = 1 1 ( 2 n 1 ) 2 ( 2 n + 1 ) 2 = 1 4 n = 1 ( 1 2 n + 1 + 1 ( 2 n + 1 ) 2 1 2 n 1 + 1 ( 2 n 1 ) 2 ) \sum^{\infty}_{n=1}\frac{1}{(2n-1)^2(2n+1)^2}=\frac{1}{4}\sum^{\infty}_{n=1}\left(\frac{1}{2n+1}+\frac{1}{(2n+1)^2}-\frac{1}{2n-1}+\frac{1}{(2n-1)^2}\right) = 1 4 n = 1 ( 1 2 n + 1 1 2 n 1 ) + 1 4 n = 1 ( 1 ( 2 n + 1 ) 2 + 1 ( 2 n 1 ) 2 ) =\frac{1}{4}\sum^{\infty}_{n=1}\left(\frac{1}{2n+1}-\frac{1}{2n-1}\right)+\frac{1}{4}\sum^{\infty}_{n=1}\left(\frac{1}{(2n+1)^2}+\frac{1}{(2n-1)^2}\right) Now we will deal with each summation separately.First deal with the first summation,which is a telescoping sum.Writing out the first few terms of the series,we see that all terms but 1 1 \frac{-1}{1} get cancelled out.So: 1 4 n = 1 ( 1 2 n + 1 1 2 n 1 ) = 1 4 × 1 1 = 1 4 \frac{1}{4}\sum^{\infty}_{n=1}\left(\frac{1}{2n+1}-\frac{1}{2n-1}\right)=\frac{1}{4}\times\frac{-1}{1}=-\frac{1}{4} The second sum is a little bit complicated.Writing out the first few terms,we get: 1 1 2 + 1 3 2 + 1 3 2 + 1 5 2 + 1 5 2 + = 1 + 2 ( 1 3 2 + 1 5 2 + 1 7 2 + ) 1 + 2 ( ( 1 1 2 + 1 2 2 + 1 3 2 + ) 1 ( 1 2 2 + 1 4 2 + ) ) = 1 + 2 ( π 2 6 1 1 2 2 ( 1 1 2 + 1 2 2 + ) ) = 1 + 2 ( π 2 6 1 1 4 × π 2 6 ) = 1 + 2 ( π 2 6 1 π 2 24 ) = 1 + 2 ( π 2 8 1 ) = 1 + π 2 4 2 = π 2 4 1 \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{5^2}+\dots\\=1+2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\dots\right)\\1+2\left(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\dots\right)-1-\left(\frac{1}{2^2}+\frac{1}{4^2}+\dots\right)\right)\\=1+2\left(\frac{\pi^2}{6}-1-\frac{1}{2^2}\left(\frac{1}{1^2}+\frac{1}{2^2}+\dots\right)\right)\\=1+2\left(\frac{\pi^2}{6}-1-\frac{1}{4}\times\frac{\pi^2}{6}\right)\\=1+2\left(\frac{\pi^2}{6}-1-\frac{\pi^2}{24}\right)\\=1+2\left(\frac{\pi^2}{8}-1\right)\\=1+\frac{\pi^2}{4}-2=\frac{\pi^2}{4}-1 So the summation equals 1 4 × ( π 2 4 1 ) = π 2 16 1 4 \frac{1}{4}\times\left(\frac{\pi^2}{4}-1\right)=\frac{\pi^2}{16}-\frac{1}{4} So the series in the question equals 1 4 + π 2 16 1 4 = π 2 16 1 2 \frac{-1}{4}+\frac{\pi^2}{16}-\frac{1}{4}=\frac{\pi^2}{16}-\frac{1}{2}

Can you elaborate how you made those partial fractions ?

Thanks.

Akshat Sharda - 5 years, 6 months ago

Log in to reply

n = 1 1 ( 2 n 1 ) 2 ( 2 n + 1 ) 2 = n = 1 ( 1 ( 2 n 1 ) ( 2 n + 1 ) ) 2 = n = 1 ( 1 2 ( 2 n 1 ) 1 2 ( 2 n + 1 ) ) 2 = n = 1 1 4 ( 1 ( 2 n + 1 ) 2 2 ( 2 n 1 ) ( 2 n + 1 ) + 1 ( 2 n 1 ) 2 ) = 1 4 n = 1 ( 1 2 n + 1 1 2 n 1 ) + 1 4 n = 1 ( 1 ( 2 n + 1 ) 2 + 1 ( 2 n 1 ) 2 ) \sum _{ n=1 }^{ \infty } \frac { 1 }{ (2n-1)^{ 2 }(2n+1)^{ 2 } } =\sum _{ n=1 }^{ \infty }{ \left( \frac { 1 }{ (2n-1)(2n+1) } \right) } ^{ 2 }=\sum _{ n=1 }^{ \infty }{ \left( \frac { 1 }{ 2(2n-1) } -\frac { 1 }{ 2(2n+1) } \right) } ^{ 2 }\\ =\sum _{ n=1 }^{ \infty } \frac { 1 }{ 4 } \left( \frac { 1 }{ (2n+1)^{ 2 } } -\frac { 2 }{ (2n-1)(2n+1) } +\frac { 1 }{ (2n-1)^{ 2 } } \right) \\ =\frac { 1 }{ 4 } \sum _{ n=1 }^{ \infty } \left( \frac { 1 }{ 2n+1 } -\frac { 1 }{ 2n-1 } \right) +\frac { 1 }{ 4 } \sum _{ n=1 }^{ \infty } \left( \frac { 1 }{ (2n+1)^{ 2 } } +\frac { 1 }{ (2n-1)^{ 2 } } \right)

Dhruva Patil - 5 years, 6 months ago

Log in to reply

Got it. Thanks !!

Akshat Sharda - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...