1 2 ⋅ 3 2 1 + 3 2 ⋅ 5 2 1 + 5 2 ⋅ 7 2 1 + ⋯
If the value of the series above is equal to C π A + B , where A , B and C are integers, find the value of A + B + C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you elaborate how you made those partial fractions ?
Thanks.
Log in to reply
n = 1 ∑ ∞ ( 2 n − 1 ) 2 ( 2 n + 1 ) 2 1 = n = 1 ∑ ∞ ( ( 2 n − 1 ) ( 2 n + 1 ) 1 ) 2 = n = 1 ∑ ∞ ( 2 ( 2 n − 1 ) 1 − 2 ( 2 n + 1 ) 1 ) 2 = n = 1 ∑ ∞ 4 1 ( ( 2 n + 1 ) 2 1 − ( 2 n − 1 ) ( 2 n + 1 ) 2 + ( 2 n − 1 ) 2 1 ) = 4 1 n = 1 ∑ ∞ ( 2 n + 1 1 − 2 n − 1 1 ) + 4 1 n = 1 ∑ ∞ ( ( 2 n + 1 ) 2 1 + ( 2 n − 1 ) 2 1 )
Problem Loading...
Note Loading...
Set Loading...
We can write the sum as n = 1 ∑ ∞ ( 2 n − 1 ) 2 ( 2 n + 1 ) 2 1 .Applying partial fraction decomposition gives us: n = 1 ∑ ∞ ( 2 n − 1 ) 2 ( 2 n + 1 ) 2 1 = 4 1 n = 1 ∑ ∞ ( 2 n + 1 1 + ( 2 n + 1 ) 2 1 − 2 n − 1 1 + ( 2 n − 1 ) 2 1 ) = 4 1 n = 1 ∑ ∞ ( 2 n + 1 1 − 2 n − 1 1 ) + 4 1 n = 1 ∑ ∞ ( ( 2 n + 1 ) 2 1 + ( 2 n − 1 ) 2 1 ) Now we will deal with each summation separately.First deal with the first summation,which is a telescoping sum.Writing out the first few terms of the series,we see that all terms but 1 − 1 get cancelled out.So: 4 1 n = 1 ∑ ∞ ( 2 n + 1 1 − 2 n − 1 1 ) = 4 1 × 1 − 1 = − 4 1 The second sum is a little bit complicated.Writing out the first few terms,we get: 1 2 1 + 3 2 1 + 3 2 1 + 5 2 1 + 5 2 1 + … = 1 + 2 ( 3 2 1 + 5 2 1 + 7 2 1 + … ) 1 + 2 ( ( 1 2 1 + 2 2 1 + 3 2 1 + … ) − 1 − ( 2 2 1 + 4 2 1 + … ) ) = 1 + 2 ( 6 π 2 − 1 − 2 2 1 ( 1 2 1 + 2 2 1 + … ) ) = 1 + 2 ( 6 π 2 − 1 − 4 1 × 6 π 2 ) = 1 + 2 ( 6 π 2 − 1 − 2 4 π 2 ) = 1 + 2 ( 8 π 2 − 1 ) = 1 + 4 π 2 − 2 = 4 π 2 − 1 So the summation equals 4 1 × ( 4 π 2 − 1 ) = 1 6 π 2 − 4 1 So the series in the question equals 4 − 1 + 1 6 π 2 − 4 1 = 1 6 π 2 − 2 1