Infinite Tangent....

Geometry Level 4

Let S = tan 1 1 2 × 1 + tan 1 1 2 × 4 + tan 1 1 2 × 9 + . . . . S=\tan^{ -1 }{ \frac { 1 }{ 2\times 1 } }+\tan^{ -1 }{ \frac { 1 }{ 2\times 4 } }+\tan^{ -1 }{ \frac { 1 }{ 2\times 9 } }+.... Find the value of π S \frac { \pi }{ S }

DETAILS

arctan x = tan 1 x 1 tan x \arctan { x } =\tan ^{ -1 }{ x } \neq \frac { 1 }{ \tan { x } }


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prakhar Gupta
Apr 30, 2015

It is an old IIT-JEE problem. A beautiful example of telescoping series!!

On observation one can easily write the general term of the sequence given in the question. S = i = 1 tan 1 1 2 i 2 S = \sum_{i=1}^{\infty} \tan^{-1}\dfrac{1}{2i^{2}} Now we will try to convert the general term into telescoping sum. S = i = 1 tan 1 2 1 + 4 i 2 1 S = \sum_{i=1}^{\infty} \tan^{-1}\dfrac{2}{1+4i^{2}-1} S = i = 1 tan 1 2 i + 1 ( 2 i 1 ) 1 + ( 2 i + 1 ) ( 2 i 1 ) S = \sum_{i=1}^{\infty} \tan ^{-1}\dfrac{2i+1-(2i-1)}{1+(2i+1)(2i-1)} Now we will apply the formula from inverse trigonometry that:- tan 1 ( A B 1 + A B ) = tan 1 A tan 1 B \tan ^{-1} \Bigg(\dfrac{A-B}{1+AB}\Bigg) = \tan^{-1}A-\tan^{-1}B Hence our Sum becomes:- S = i = 1 tan 1 ( 2 i + 1 ) tan 1 ( 2 i 1 ) S= \sum_{i=1}^{\infty} \tan^{-1}(2i+1) - \tan^{-1}(2i-1) We can easily observe that the sum is now telescoping. S = lim n ( t a n 1 3 tan 1 1 + tan 1 5 tan 1 3 tan 1 ( 2 n + 1 ) tan 1 ( 2 n 1 ) S = \lim_{n\to\infty} (tan^{-1} 3 -\tan^{-1} 1+\tan^{-1} 5-\tan^{-1} 3 \ldots \tan^{-1} (2n+1) - \tan^{-1}(2n-1) After cancelling the corresponding terms we get:- S = lim n tan 1 ( 2 n + 1 ) tan 1 1 S = \lim_{n\to\infty} \tan^{-1} (2n+1) - \tan^{-1} 1 S = π 2 π 4 S = \dfrac{\pi}{2} - \dfrac{\pi}{4} S = π 4 S = \dfrac{\pi}{4} Hence the answer is 4 \boxed{4} .

Did same. gd problem.

Rushikesh Joshi - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...