Let S = tan − 1 2 × 1 1 + tan − 1 2 × 4 1 + tan − 1 2 × 9 1 + . . . . Find the value of S π
DETAILS
arctan x = tan − 1 x = tan x 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
It is an old IIT-JEE problem. A beautiful example of telescoping series!!
On observation one can easily write the general term of the sequence given in the question. S = i = 1 ∑ ∞ tan − 1 2 i 2 1 Now we will try to convert the general term into telescoping sum. S = i = 1 ∑ ∞ tan − 1 1 + 4 i 2 − 1 2 S = i = 1 ∑ ∞ tan − 1 1 + ( 2 i + 1 ) ( 2 i − 1 ) 2 i + 1 − ( 2 i − 1 ) Now we will apply the formula from inverse trigonometry that:- tan − 1 ( 1 + A B A − B ) = tan − 1 A − tan − 1 B Hence our Sum becomes:- S = i = 1 ∑ ∞ tan − 1 ( 2 i + 1 ) − tan − 1 ( 2 i − 1 ) We can easily observe that the sum is now telescoping. S = n → ∞ lim ( t a n − 1 3 − tan − 1 1 + tan − 1 5 − tan − 1 3 … tan − 1 ( 2 n + 1 ) − tan − 1 ( 2 n − 1 ) After cancelling the corresponding terms we get:- S = n → ∞ lim tan − 1 ( 2 n + 1 ) − tan − 1 1 S = 2 π − 4 π S = 4 π Hence the answer is 4 .