Infinite trigonometric limit

Calculus Level 4

lim n cos ( x 2 ) cos ( x 4 ) cos ( x 8 ) cos ( x 2 n ) \large \lim_{n \to \infty} \cos \left(\frac x2 \right) \cos \left(\frac x4 \right) \cos \left(\frac x8 \right) \cdots \cos \left(\frac x{2^n} \right)

Find the above limit at x = π 6 x=\dfrac \pi 6

1 π \pi e 0 3 / π 3/\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Multiply and divide by 2 n s i n ( x / 2 n ) 2^n sin(x/2^n) , so the numerator will become s i n x sinx {Using 2 s i n x c o s x = s i n 2 x 2sinxcosx=sin2x }

therefore expression is s i n x 2 n s i n ( x / 2 n ) \frac{sinx}{2^n sin(x/2^n)}

lim n s i n x 2 n s i n ( x / 2 n ) = s i n x lim n 2 n s i n ( x / 2 n ) \lim_{n \to \infty} \frac{sinx}{2^n sin(x/2^n)}=\frac{sinx}{\lim_{n \to \infty} 2^n sin(x/2^n)}

as n n \to \infty therefore, we have x / 2 n 0 x/2^n \to 0 therefore,

lim n 2 n s i n ( x / 2 n ) = x \lim_{n \to \infty} 2^n sin(x/2^n)=x

So, answer is s i n x x = 3 π \boxed{\frac{sinx}{x}}= \frac{3}{\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...