Infinite

Calculus Level 4

n = 1 n 4 5 n \large \sum_{n=1}^\infty \dfrac{n^4}{5^n}

The value of the infinite series above can be expressed in the form a b \frac{a}{b} , where a a and b b are positive coprime integers. Find a + b a+b .


The answer is 413.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vighnesh Raut
Jan 10, 2015

Let the sum of infinite series be represented by S.

So, S= 1 5 + 16 25 + 81 125 + 256 625 + . . . . . = n = 0 n 4 5 n \frac { 1 }{ 5 } +\frac { 16 }{ 25 } +\frac { 81 }{ 125 } +\frac { 256 }{ 625 } +.....\\ =\sum _{ n=0 }^{ \infty }{ \frac { { n }^{ 4 } }{ { 5 }^{ n } } }

Now, we know that n = 0 x n = 1 1 x \sum _{ n=0 }^{ \infty }{ { x }^{ n } } =\frac { 1 }{ 1-x } for all 0<x<1.

So, differentiating on both sides, we get

n = 0 n x n 1 = 1 ( 1 x ) 2 \sum _{ n=0 }^{ \infty }{ { nx }^{ n-1 } } =\frac { 1 }{ { (1-x) }^{ 2 } }

Multiplying both sides by x and differentiating again , we get

n = 0 n 2 x n 1 = x 2 + x ( 1 x ) 3 \sum _{ n=0 }^{ \infty }{ { { n }^{ 2 }x }^{ n-1 } } =\frac { { x }^{ 2 }+x }{ { (1-x) }^{ 3 } }

Again multiplying both sides by x and differentiating, we get

n = 0 n 3 x n 1 = x 2 + 4 x + 1 ( 1 x ) 4 \sum _{ n=0 }^{ \infty }{ { { n }^{ 3 }x }^{ n-1 } } =\frac { { x }^{ 2 }+4x+1 }{ { (1-x) }^{ 4 } }

Once again multiplying by x and differentiating on both sides, we get

n = 0 n 4 x n 1 = x 3 + 11 x + 11 x 2 + 1 ( 1 x ) 5 \sum _{ n=0 }^{ \infty }{ { { n }^{ 4 }x }^{ n-1 } } =\frac { { x }^{ 3 }+11x+{ 11x }^{ 2 }+1 }{ { (1-x) }^{ 5 } }

For the last time multiplying by x on both sides, we get

n = 0 n 4 x n = x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 \sum _{ n=0 }^{ \infty }{ { { n }^{ 4 }x }^{ n } } =\frac { { x }^{ 4 }+11{ x }^{ 3 }+{ 11x }^{ 2 }+x }{ { (1-x) }^{ 5 } }

Now , we know that the above summation is valid for all x less than 1 and greater than 0. So, we just need to put the value of x = 1 5 \frac { 1 }{ 5 } to get the value of S.

Hence. by substituting the value of x = 1 5 \frac { 1 }{ 5 } , we get

n = 0 n 4 5 n = 1 5 4 + 11 5 3 + 11 5 2 + 1 5 ( 1 1 5 ) 5 = 285 128 \sum _{ n=0 }^{ \infty }{ \frac { { n }^{ 4 } }{ { 5 }^{ n } } } =\frac { { \frac { 1 }{ { 5 }^{ 4 } } }+{ \frac { 11 }{ { 5 }^{ 3 } } }+\frac { 11 }{ { 5 }^{ 2 } } +\frac { 1 }{ 5 } }{ { (1-\frac { 1 }{ 5 } ) }^{ 5 } } =\quad \frac { 285 }{ 128 } \\ \\

wow...an awesome approach.....keep it up.....

manish bhargao - 6 years, 4 months ago

Log in to reply

thank you ....

Vighnesh Raut - 6 years, 4 months ago
Paola Ramírez
Jan 19, 2015

x = 1 x 4 5 x = 1 128 5 x ( 32 x 4 160 x 3 360 x 2 460 x + 57 5 x + 1 285 ) \sum_{x=1}^{\infty}{\frac{x^4}{5^x}} = \frac{1}{128} 5^{-x} (-32x^4-160x^3-360x^2-460x+57 5^{x+1}-285)

For x x\rightarrow\infty 1 128 5 x ( 32 x 4 160 x 3 360 x 2 460 x + 57 5 ( x + 1 ) 285 ) = 285 128 \frac{1}{128} 5^{-x} (-32x^4-160x^3-360x^2-460x+57 5^(x+1)-285)=\boxed{\frac{285}{128}}

hey your solution looks pretty good but can you please explain how u got the right hand side of the summation

Vighnesh Raut - 6 years, 4 months ago
Rajen Kapur
Jan 7, 2015

Hint: Putting x = 1/5, the generating function of this summation S can be expressed as 5*S = { (1 + 11x + 11 x^2 + x^3)/(1 - x)^5}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...