Infinitely Infinite Resistors

Find the resistance between the points A A and B B of an infinite circuit shown. The resistance of the resistors in each loop is twice those of the previous loop on its left.

Given that the resistance can be written as:

a + b c \frac { a+\sqrt { b } }{ c }

Find a + b + c a+b+c

SJPO SPECIAL ROUND 2010

This question is part of my set SJPO Practice Questions


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 10, 2015

Let the equivalent resistance be R R . Since the circuit is infinite, we have (see diagram below):

R = 1 + 1 2 R + 1 = 2 + 1 × 2 R 1 + 2 R R ( 1 + 2 R ) = 2 ( 1 + 2 R ) + 2 R R + 2 R 2 = 2 + 6 R 2 R 2 5 R 2 = 0 R = 5 + 25 + 16 8 = 5 + 41 8 a + b + c = 5 + 41 + 8 = 50 \begin{aligned} R & = 1 + 1||2R + 1 \\ & = 2 + \dfrac{1\times 2R}{1+2R} \\ \Rightarrow R(1+2R) & = 2(1 + 2R) + 2R \\ R + 2R^2 & = 2 + 6R \\ 2R^2 - 5R -2 & = 0 \\ \Rightarrow R & = \frac{5+\sqrt{25+16}}{8} = \frac{5+\sqrt{41}}{8} \\ \Rightarrow a + b + c & = 5+41+8 = \boxed{50} \end{aligned}

Moderator note:

This is a beautiful solution. The coarse graining cuts through some needless algebra.

I see now that there is a misprint in the calculation by Chew Seong Cheong, the 8 for c should be a 4!

Hugh Fletcher - 3 years, 9 months ago
Julian Poon
Aug 30, 2014

The resistance of the circuit can be written as an infinite fraction:

2 ( 2 0 ) + 1 1 2 0 + 1 2 ( 2 1 ) + 1 1 2 1 + 1 2 ( 2 2 ) + 1 . . . = 2 1 + 1 1 2 0 + 1 2 2 + 1 1 2 1 + 1 2 3 + 1 . . . = x ( 1 ) 2({ 2 }^{ 0 })+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 0 } } +\frac { 1 }{ 2({ 2 }^{ 1 })+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 1 } } +\frac { 1 }{ 2({ 2 }^{ 2 })+\frac { 1 }{ ... } } } } } ={ 2 }^{ 1 }+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 0 } } +\frac { 1 }{ { 2 }^{ 2 }+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 1 } } +\frac { 1 }{ { 2 }^{ 3 }+\frac { 1 }{ ... } } } } } =x\quad ---(1)

And so,

2 x = 2 2 + 1 1 2 1 + 1 2 3 + 1 1 2 2 + 1 2 4 + 1 . . . ( 2 ) 2x={ 2 }^{ 2 }+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 1 } } +\frac { 1 }{ { 2 }^{ 3 }+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 2 }^{ 4 }+\frac { 1 }{ ... } } } } } \quad ---(2)

This makes:

( 2 ) s u b s t i t u t e i n t o ( 1 ) : x = 2 1 + 1 1 2 0 + 1 2 2 + 1 1 2 1 + 1 2 3 + 1 . . . = 2 + 1 1 + 1 2 x (2)\quad substitute\quad into\quad (1):\\ \\ x={ 2 }^{ 1 }+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 0 } } +\frac { 1 }{ { 2 }^{ 2 }+\frac { 1 }{ \frac { 1 }{ { 2 }^{ 1 } } +\frac { 1 }{ { 2 }^{ 3 }+\frac { 1 }{ ... } } } } } ={ 2 }+\frac { 1 }{ 1+\frac { 1 }{ 2x } }

Solving for:

x = 2 + 1 1 + 1 2 x x={ 2 }+\frac { 1 }{ 1+\frac { 1 }{ 2x } }

Gives:

x = 5 ± 41 4 x=\frac { 5\pm \sqrt { 41 } }{ 4 }

Since

x > 2 x>2

x = 5 + 41 4 = a + b c x=\frac { 5+\sqrt { 41 } }{ 4 } =\frac { a+\sqrt { b } }{ c }

Making a + b + c = 50 a+b+c=\boxed{50}

Rwit Panda
Jun 11, 2015

For each loop, resistance becomes 2 times. So, if equivalent resistance between A and B is x, then the equivalent resistance of second loop is 2x. Now 2x and 1 in parallel and this is in series with the two 1,s. This is equal to x(equivalent resistance between A and B). This gives us a quadratic in x, (x^2 - 5x - 2 =0). On solving, we get a=5, b=41, c=4. So, a+b+c=50

I know where that came from......he he

Arijit ghosh Dastidar - 5 years, 11 months ago

Log in to reply

Gud you know

Rwit Panda - 5 years, 11 months ago

are you by any chance PANJ sirs student

Harsh YadV - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...