Infinitely many integrals

Calculus Level 4

lim n 1 n m 1 a n 1 1 a 3 1 a 2 1 a 1 n integrals 1 d a 0 d a 1 d a 2 d a 3 d a n 2 d a n 1 \displaystyle \lim_{n\to \infty} \displaystyle \underbrace{\int_1^{\frac{n}{m}}\int_1^{a_{n-1}} \dots \int_1^{a_3} \int_1^{a_2}\int_1^{a_1}}_{\text{n integrals}} 1 ~ \Bbb{d}a_0 \Bbb{d}a_1 \Bbb{d}a_2 \Bbb{d}a_3 \cdots \Bbb{d}a_{n-2} \Bbb{d}a_{n-1}

Find the smallest positive value of m m such that the following infinite series of integrals converges.


The answer is 2.718.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Feb 10, 2017

Note that the given integral can be written as the multiple integral I ( n , m ) = \idotsint 1 a 0 a 1 a n 1 n / m 1 d a . I(n,m) = \idotsint_{1\leq a_0 \leq a_1 \leq \cdots \leq a_{n-1} \leq n/m} 1\, d\mathbf{a}. Also, by symmetry, we may see that I ( n , m ) = \idotsint 1 a σ ( 0 ) a σ ( 1 ) a σ ( n 1 ) n / m 1 d a I(n,m) = \idotsint_{1\leq a_{\sigma(0)} \leq a_{\sigma(1)} \leq \cdots \leq a_{\sigma(n-1)} \leq n/m} 1\, d\mathbf{a} for any of the n ! n! permutations σ \sigma of { 0 , 1 , , n 1 } \{0,1,\ldots,n-1\} . Therefore, I ( n , m ) = 1 n ! σ \idotsint 1 a σ ( 0 ) a σ ( 1 ) a σ ( n 1 ) n / m 1 d a = 1 n ! \idotsint 1 a 0 , a 1 , , a n 1 n / m 1 d a = 1 n ! ( 1 n / m 1 d a ) n = 1 n ! ( n m 1 ) n . \begin{aligned} I(n,m) &= \frac{1}{n!} \sum_{\sigma} \idotsint_{1\leq a_{\sigma(0)} \leq a_{\sigma(1)} \leq \cdots \leq a_{\sigma(n-1)} \leq n/m} 1\, d\mathbf{a} \\ &= \frac{1}{n!} \idotsint_{1\leq a_0, a_1, \ldots, a_{n-1} \leq n/m} 1\, d\mathbf{a} \\ &= \frac{1}{n!} \left(\int_1^{n/m} 1\, da\right)^n \\ &= \frac{1}{n!} \left(\frac{n}{m}-1\right)^n. \end{aligned}

Now, using Stirling's approximation for the factorial, we have n ! 2 π n ( n e ) n n! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n and therefore, I ( n , m ) = 1 n ! ( n m 1 ) n 1 2 π n ( n / e ) n ( n m ) n ( 1 m n ) n 1 2 π n ( e m ) n e m . I(n,m) = \frac{1}{n!} \left(\frac{n}{m}-1\right)^n \sim \frac{1}{\sqrt{2\pi n}(n/e)^n} \left(\frac{n}{m}\right)^n \cdot \left(1-\frac{m}{n}\right)^n \sim \frac{1}{\sqrt{2\pi n}}\left(\frac{e}{m}\right)^n \cdot e^{-m}.

From this, we see that if m < e |m| < e , then lim n I ( n , m ) \displaystyle \lim_{n\rightarrow\infty} I(n,m) will diverge, and if m e |m|\geq e , then lim n I ( n , m ) = 0 \displaystyle \lim_{n\rightarrow\infty} I(n,m) = 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...