Infinitely many solutions, but just one value

Geometry Level 2

For what positive value of k k does

cos θ + sin θ = k \cos \theta + \sin \theta = k

uniquely determine the value of

cos θ sin θ ? \cos \theta - \sin \theta ?

1 2 2 \sqrt{2} 3 \sqrt{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jun 18, 2015

cos θ + sin θ = k sin ( π 2 θ ) + cos ( π 2 θ ) = k \cos{\theta} + \sin{\theta} = k \quad \Rightarrow \sin{\left( \frac{\pi}{2} - \theta \right)} + \cos{\left( \frac{\pi}{2} - \theta \right)} = k

Therefore, for θ [ 0 , π 2 ] \theta \in [0, \frac{\pi}{2} ] , there are two θ \theta 's that satisfy the above equation, θ 1 \theta_1 and θ 2 = π 2 θ 1 \theta_2 = \frac{\pi}{2} - \theta_1 , except when θ 1 = π 4 \theta_1 = \frac{\pi}{4} then θ 2 = θ 1 = π 4 \theta_2 = \theta_1 = \frac{\pi}{4} . Then there is only one solution to the equation and there is only one value for cos θ sin θ = 0 \cos{\theta} - \sin{\theta} = 0 .

When θ = π 4 \theta = \frac{\pi}{4} , we have:

cos θ + sin θ = k sin ( π 4 ) + cos ( π 4 ) = k 1 2 + 1 2 = k k = 2 \begin{aligned} \cos{\theta} + \sin{\theta} & = k \\ \Rightarrow \sin{\left( \frac{\pi}{4} \right)} + \cos{\left( \frac{\pi}{4} \right)} & = k \\ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} & = k \\ \Rightarrow k & = \boxed{\sqrt{2}} \end{aligned}

Moderator note:

Slightly incomplete. You should also explain why if we have 2 values of θ \theta that satisfy the above equation, then we are guaranteed to have 2 values of cos θ sin θ \cos \theta - \sin \theta .

Pranshu Gaba
Jun 18, 2015

Using the Trigonometric Equations - R method and the substitution y = θ + π 4 y = \theta + \frac{\pi}{4} , we can write the equation as 2 sin y = k \sqrt{2} \sin y= k . We want to uniquely determine the value of 2 sin ( y + π 2 ) \sqrt{2} \sin \left(y + \frac{\pi}{2}\right) , which is equivalent to 2 cos y \sqrt{2} \cos y .

Using the Pythagorean Identities ,

cos y = ± 1 sin 2 y \cos y = \pm \sqrt{1 - \sin^2 y}

A unique value of 2 cos y \sqrt{2} \cos y will be obtained only when + 1 sin 2 y = 1 sin 2 y + \sqrt{1 - \sin^2 y} = - \sqrt{1 - \sin^2 y} , i.e. cos y = 0 \cos y = 0 .

When cos y = 0 \cos y = 0 , sin y = ± 1 \sin y = \pm 1 , so k = ± 2 k = \pm \sqrt{2} .

Hence k = 2 \boxed{k = \sqrt{2}} is the positive value of k k which uniquely determines the value of cos θ sin θ \cos \theta - \sin \theta . _\square .

Moderator note:

Great explanation that also explains how the other cases will lead to 2 values, and what these values are.

Abhishek Sinha
Jun 18, 2015

Let cos ( θ ) sin ( θ ) = l \cos(\theta)-\sin(\theta)=l . Then we have l 2 + k 2 = 2 l^2+k^2=2 i.e. l = ± 2 k 2 l=\pm \sqrt{2-k^2} Unless k 2 = 2 k^2=2 , we have either two distinct values of l l or no (real) value of l l . Hence the only positive value of k k with unique value of l l is 2 \sqrt{2} .

And of course, you should verify that a corresponding value of θ \theta exists.

E.g. there will be no solution to k = 2 k = 2 .

Calvin Lin Staff - 5 years, 12 months ago
Farah Roslend
Jun 19, 2015

cos@+sin@=k
[cos@+sin@=k]^2
1+2cos@sin@=k^2
sin2@=k^2-1
@=sin^-1[(k^2-1)]/2



If k=2,
@=[sin^-1(3)]/2=undefined

If k=sqrt(2),
@=..., pi/4, 1.25pi, ...

If k=1,
@=..., 0, pi/2, ...

If k=sqrt(3),
@=[sin^-1(2)]/2=undefined

Now we have 2 possibilities for k=sqrt(2), 1.

Let f(@)=cos@-sin@.

For k=sqrt(2),
... f(0.25pi)=0 f(1.25pi)=0 ... f(@)=0

For k=1,
... f(0)=1 f(0.5pi)=-1 ... f(@)=1,-1

Thus, for cos@-sin@ to be constant, k=sqrt(2).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...