Infinitely nested differential

Calculus Level 3

Given that: y = x + x + x + . . . y = \sqrt{x + \sqrt{x + \sqrt{x + ...}}} Find d y d x \frac{dy}{dx} when y = 4.5 y = 4.5


The answer is 0.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Discussions for this problem are now closed

Leonard Zuniga
Jan 1, 2015

y = x + x + x + . . . y = x + y y 2 = x + y y 2 y = x d d x ( y 2 y ) = d x d x 2 y d y d x d y d x = 1 d y d x ( 2 y 1 ) = 1 d y d x = 1 2 y 1 y\quad =\quad \sqrt { x\quad +\quad \sqrt { x\quad +\quad \sqrt { x\quad +\quad ... } } } \\ y\quad =\quad \sqrt { x\quad +\quad y } \\ { y }^{ 2 }\quad =\quad x\quad +\quad y\\ { y }^{ 2 }\quad -\quad y\quad =\quad x\\ \frac { d }{ dx } (y^{ 2 }-y)\quad =\quad \frac { dx }{ dx } \\ 2y\frac { dy }{ dx } \quad -\quad \frac { dy }{ dx } \quad =\quad 1\\ \frac { dy }{ dx } (2y\quad -\quad 1)\quad =\quad 1\\ \frac { dy }{ dx } \quad =\quad \frac { 1 }{ 2y\quad -\quad 1 } Substitute 4.5 4.5 for y y , you'll get: d y d x = 1 2 ( 4.5 ) 1 d y d x = 1 8 = 0.125 \frac { dy }{ dx } \quad =\quad \frac { 1 }{ 2(4.5)\quad -\quad 1 } \\ \frac { d y}{ dx } \quad =\quad \frac { 1 }{ 8 } \quad =\quad \boxed { 0.125 }

Very nice and well presented. :)

Josh Banister - 6 years, 5 months ago
Natsir Muhammad
Dec 26, 2014

it is similar with y 2 = x + y y^2 = x + y

then 2 y d y / d x = 1 + d y / d x 2y dy/dx = 1 + dy/dx

subst y = 4.5 y = 4.5

9 d y / d x = 1 + d y / d x 9dy/dx = 1 + dy/dx

d y / d x = 0.125 dy/dx = 0.125

yay :D

Keith Fife
Jan 2, 2015

Gamal Sultan
Jan 1, 2015

Squaring

y^2 = x + y

2 y dy/dx = 1 + dy/dx

( 2 y - 1 ) dy/dx = 1

dy/dx = 1/( 2 y - 1 )

y = 4.5

dy/dx = 1/8 = 0.125

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...