Infinitely Nested Trig Function...'s derivative?

Calculus Level 3

y = sin ( x + tan ( x + sin ( x + tan ( x + sin ( x + tan ( . . . ) . . . ) ) ) ) ) y = \sin\Big(x+\tan\big(x+\sin\big( x+\tan\big(x+\sin( x+\tan(...)\, ...)\, \big)\, \big)\, \big)\, \Big)

Find the value of d y d x \frac{dy}{dx} at x = π x=\pi to 2 decimal places.

-2.00 -1.57 -1.33 -1.00 -0.92 -0.77

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

y = sin ( x + tan ( x + sin ( x + tan ( x + sin ( x + tan ( ) ) ) ) ) ) = sin ( x + tan ( x + y ) ) d y d x = cos ( x + tan ( x + y ) ) ( 1 + sec 2 ( x + y ) ( 1 + d y d x ) ) By chain rule d y d x x = π = cos ( π + tan ( π + 0 ) ) ( 1 + sec 2 ( π + 0 ) ( 1 + d y d x x = π ) ) Note that y ( π ) = 0 = ( 1 ) ( 1 + 1 + d y d x x = π ) = 2 d y d x x = π = 1 \begin{aligned} y & = \sin(x+\tan(x+\sin(x+\tan(x+\sin(x+\tan(\cdots)))))) \\ & = \sin(x+\tan(x+y)) \\ \implies \frac {dy}{dx} & = \cos(x + \tan(x+y))\left(1+\sec^2(x+y)\left(1+\frac {dy}{dx}\right)\right) & \small \color{#3D99F6} \text{By chain rule} \\ \frac {dy}{dx}\bigg|_{x = \pi} & = \cos(\pi + \tan(\pi+{\color{#3D99F6}0}))\left(1+\sec^2(\pi+{\color{#3D99F6}0})\left(1+\frac {dy}{dx}\bigg|_{x = \pi}\right)\right) & \small \color{#3D99F6} \text{Note that }y(\pi) = 0 \\ & = (-1)\left(1+1+\frac {dy}{dx}\bigg|_{x = \pi}\right) \\ & = -2-\frac {dy}{dx}\bigg|_{x = \pi} \\ & = \boxed{-1} \end{aligned}

Timothy Cao
Apr 1, 2018

Step 1: Sub expression into itself

y = s i n ( x + t a n ( x + y ) ) y=sin(x+tan(x+y))

Step 2: Implicitly differentiate

d y d x = c o s ( x + t a n ( x + y ) ) ( 1 + s e c 2 ( x + y ) ) ( 1 + d y d x ) \frac{dy}{dx} = cos(x+tan(x+y)) (1 + sec^{2}(x+y)) (1+\frac{dy}{dx})

Step 3: Rearrange for d y d x \frac{dy}{dx}

d y d x = ( s e c 2 ( y + x ) + 1 ) ( c o s ( t a n ( y + x ) + x ) ( s e c 2 ( y + x ) ) ( c o s ( t a n ( y + x ) + x ) 1 \frac{dy}{dx} = -\frac{(sec^{2}(y+x)+1)(cos(tan(y+x)+x)}{(sec^{2}(y+x))(cos(tan(y+x)+x)-1}

Step 4: y = 0 y = 0 satisfies the original equation (Notice that y is in [-1,1] as sin can only produce between -1 and 1))

0 = s i n ( p i + t a n ( p i + 0 ) ) 0=sin(pi+tan(pi+0))

Step 5: Plugin x = π x = \pi and y = 0 y = 0

d y d x = ( s e c 2 ( 0 + π ) + 1 ) ( c o s ( t a n ( 0 + π ) + π ) ( s e c 2 ( 0 + π ) ) ( c o s ( t a n ( 0 + π ) + π ) 1 \frac{dy}{dx} = -\frac{(sec^{2}(0+\pi)+1)(cos(tan(0+\pi)+\pi)}{(sec^{2}(0+\pi))(cos(tan(0+\pi)+\pi)-1}

d y d x = ( 1 + 1 ) ( c o s ( 0 + π ) ( 1 ) ( c o s ( 0 + π ) 1 \frac{dy}{dx} = -\frac{(1+1)(cos(0+\pi)}{(1)(cos(0+\pi)-1}

d y d x = ( 2 ) ( 1 ) ( 1 ) ( 1 ) 1 \frac{dy}{dx} = -\frac{(2)(-1)}{(1)(-1) -1}

d y d x = ( 2 ) ( 2 ) \frac{dy}{dx} = -\frac{(-2)}{(-2)}

d y d x = 1 \frac{dy}{dx} = -1

Done !

Like \pi, \frac, you should have \ in front of all functions sin, tan, cos, ln, etc. Note that without \, sin, tan are in italic which is for variable. Function names should not be in italic. Comparing \sin x sin x \sin x . Note that sin is not in italic and there is a space between sin and x. Now look at sin x s i n x sin x , everything is in italic and stick together. You can see the LaTex codes by placing your mouse cursor on top of formulas. Or click the pull-down menu " \cdots More" under the answer section and select "Toggle LaTex". You can use \ [ \ ], instead of \ ( \ ) and find that the format is properly down. Use \dfrac so that the nominator and denominator font size are not reduced.

Also -0.92 and -0.77 have only 2 significant figures and not 3. Therefore, I have changed your problem wording.

Chew-Seong Cheong - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...