Infinitely

Algebra Level 3

X = 1 5 + 1 5 + 1 5 5 + 1 25 + . . . \large{ X = \dfrac{1}{\sqrt{5}} + \dfrac{1}{5} +\dfrac{1}{5\sqrt{5}} + \dfrac{1}{25} + ...}

Find the value of X \left \lfloor X \right \rfloor .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Baqir
Sep 18, 2015

S = 1 5 + R e d 1 5 + 1 5 5 + 1 5 S = 1 5 + 1 5 5 + ¨ S u b t r a c t : ¨ = ( 1 1 5 ) S = 1 5 S = 5 5 ( 5 1 ) 0.8... H i g h e s t i n t e g e r l e s s t h e n 0.8 i s 0 S\quad =\quad \frac { 1 }{ \sqrt { 5 } } +{ Red }{ \frac { 1 }{ 5 } +\frac { 1 }{ 5\sqrt { 5 } } }+\dots \dots \dots ---\heartsuit \\ \frac { 1 }{ \sqrt { 5 } } S\quad =\quad \frac { 1 }{ 5 } +\frac { 1 }{ 5\sqrt { 5 } } +\dots \dots \dots ----\ddot { \smile } \\ Subtract:\quad \\ \ddot { \smile } -\quad \heartsuit \quad =\quad (1-\frac { 1 }{ \sqrt { 5 } } )S\quad =\quad \frac { 1 }{ 5 } \quad \\ \vdots \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \vdots \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \vdots \\ S\quad =\quad \frac { \sqrt { 5 } }{ \sqrt { 5 } (\sqrt { 5 } -1) } \Longrightarrow \quad 0.8...\\ Highest\quad integer\quad less\quad then\quad 0.8\quad is\quad 0

Sai Ram
Oct 21, 2015

Given that

X = 1 5 + 1 5 + 1 5 5 + 1 25 + . . . . . . . . . . . . . . . . . . . . . . . . . X = \dfrac{1}{\sqrt{5}}+\dfrac{1}{5} + \dfrac{1}{5 \sqrt{5}}+ \dfrac{1}{25}+ .........................

Now it is easy to determine that it is a Geometric Progression. Now,

a = 1 5 a = \dfrac{1}{\sqrt{5}} and r = 1 5 r = \dfrac{1}{\sqrt{5}}

Now we know that, in a G.P, sum of infinite terms is given by

S = a 1 r . \large{S_{\infty}}= \dfrac{a}{1-r}.

Therefore,

S = 1 5 1 1 5 = 1 5 1 = 5 1 4 {S_{\infty}} = \dfrac{\dfrac{1}{\sqrt{5}}}{1 - \dfrac{1}{\sqrt{5}}} = \dfrac{1}{\sqrt{5}-1} = \dfrac{\sqrt{5}-1}{4}

We know that 5 = 2.236 \sqrt{5} = 2.236 (approx)

Now,

X = 2.236 + 1 4 = 3.236 4 = 0.8. X = \dfrac{2.236+1}{4} = \dfrac{3.236}{4} = 0.8.

Therefore,

X = 0.8 = 0 \left \lfloor X \right \rfloor = \left \lfloor 0.8 \right \rfloor = \boxed{\boxed{0}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...