2 π 1 ( 1 ! 3 π 3 − 3 ! 5 π 5 + 5 ! 7 π 7 + ⋯ )
If the closed form of the infinite sum above can be expressed as n m , where m and n are coprime positive integers. Find m n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = 2 π 1 ( 1 ! 3 π 3 − 3 ! 5 π 5 + 5 ! 7 π + ⋯ ) = 2 π 1 n = 1 ∑ ∞ ( 2 n − 1 ) ! ( 2 n + 1 ) ( − 1 ) n − 1 π 2 n + 1 = 2 π 1 n = 1 ∑ ∞ ( 2 n ) ( 2 n − 1 ) ! ( 2 n + 1 ) ( − 1 ) n − 1 π 2 n + 1 ( 2 n ) = 2 π 1 n = 1 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n − 1 π 2 n + 1 ( 2 n + 1 − 1 ) = 2 π 1 n = 1 ∑ ∞ ( ( 2 n + 1 ) ! ( − 1 ) n − 1 π 2 n + 1 ( 2 n + 1 ) − ( 2 n + 1 ) ! ( − 1 ) n − 1 π 2 n + 1 ) = 2 π 1 n = 1 ∑ ∞ ( ( π ) ( 2 n ) ! ( − 1 ) n − 1 π 2 n ( 2 n + 1 ) − ( 2 n + 1 ) ! ( − 1 ) n − 1 π 2 n + 1 ) = 2 π π ( 2 ! π 2 − 4 ! π 4 + 6 ! π 6 + ⋯ ) − 2 π 1 ( 3 ! π 3 − 5 ! π 5 + 7 ! π 7 + ⋯ ) = 2 1 ( 1 − cos π ) − 2 π 1 ( π − sin π ) = 1 − 2 1 = 2 1 ⟹ n m ⟹ m n = 2
The sum stated in the question and in the solution is not the same
Problem Loading...
Note Loading...
Set Loading...
Using Maclaurin series as follows.
x sin x ∫ x sin x d x − x cos x + ∫ cos x d x − x cos x + sin x + C ⟹ C ⟹ − x cos x + sin x π = 1 ! x 2 − 3 ! x 4 + 5 ! x 6 − ⋯ = 1 ! 3 x 3 − 3 ! 5 x 5 + 5 ! 7 x 7 − ⋯ = 1 ! 3 x 3 − 3 ! 5 x 5 + 5 ! 7 x 7 − ⋯ = 1 ! 3 x 3 − 3 ! 5 x 5 + 5 ! 7 x 7 − ⋯ = 0 = 1 ! 3 x 3 − 3 ! 5 x 5 + 5 ! 7 x 7 − ⋯ = 1 ! 3 π 3 − 3 ! 5 π 5 + 5 ! 7 π 7 − ⋯ By integration by parts where C is the constant of integration. Putting x = 0 Putting x = π
⟹ 2 π 1 ( 1 ! 3 π 3 − 3 ! 5 π 5 + 5 ! 7 π 7 − ⋯ ) = 2 π 1 × π = 2 1
⟹ m n = 1 × 2 = 2