Infinitly summed π \pi

Calculus Level 3

1 2 π ( π 3 1 ! 3 π 5 3 ! 5 + π 7 5 ! 7 + ) \large \frac{1}{2\pi}\left(\frac{\pi^3}{1!3}-\frac{\pi^5}{3!5}+\frac{\pi^7}{5!7}+\cdots\right)

If the closed form of the infinite sum above can be expressed as m n \dfrac{m}{n} , where m m and n n are coprime positive integers. Find m n mn .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 25, 2017

Using Maclaurin series as follows.

x sin x = x 2 1 ! x 4 3 ! + x 6 5 ! x sin x d x = x 3 1 ! 3 x 5 3 ! 5 + x 7 5 ! 7 By integration by parts x cos x + cos x d x = x 3 1 ! 3 x 5 3 ! 5 + x 7 5 ! 7 x cos x + sin x + C = x 3 1 ! 3 x 5 3 ! 5 + x 7 5 ! 7 where C is the constant of integration. C = 0 Putting x = 0 x cos x + sin x = x 3 1 ! 3 x 5 3 ! 5 + x 7 5 ! 7 Putting x = π π = π 3 1 ! 3 π 5 3 ! 5 + π 7 5 ! 7 \begin{aligned} x \sin x & = \frac {x^2}{1!} - \frac {x^4}{3!} + \frac {x^6}{5!} - \cdots \\ \color{#3D99F6} \int x \sin x \ dx & = \frac {x^3}{1!3} - \frac {x^5}{3!5} + \frac {x^7}{5!7} - \cdots & \small \color{#3D99F6} \text{By integration by parts} \\ - x \cos x + \int \cos x \ dx & = \frac {x^3}{1!3} - \frac {x^5}{3!5} + \frac {x^7}{5!7} - \cdots \\ - x \cos x + \sin x + \color{#3D99F6} C & = \frac {x^3}{1!3} - \frac {x^5}{3!5} + \frac {x^7}{5!7} - \cdots & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ \implies C & = 0 & \small \color{#3D99F6} \text{Putting }x = 0 \\ \implies - x \cos x + \sin x & = \frac {x^3}{1!3} - \frac {x^5}{3!5} + \frac {x^7}{5!7} - \cdots & \small \color{#3D99F6} \text{Putting }x = \pi \\ \pi & = \frac {\pi^3}{1!3} - \frac {\pi^5}{3!5} + \frac {\pi^7}{5!7} - \cdots \end{aligned}

1 2 π ( π 3 1 ! 3 π 5 3 ! 5 + π 7 5 ! 7 ) = 1 2 π × π = 1 2 \displaystyle \implies \frac 1{2\pi}\left(\frac {\pi^3}{1!3} - \frac {\pi^5}{3!5} + \frac {\pi^7}{5!7} - \cdots \right) = \frac 1{2\pi} \times \pi = \frac 12

m n = 1 × 2 = 2 \implies mn = 1\times 2 = \boxed{2}

Naren Bhandari
Oct 20, 2017

S = 1 2 π ( π 3 1 ! 3 π 5 3 ! 5 + π 5 ! 7 + ) = 1 2 π n = 1 ( 1 ) n 1 π 2 n + 1 ( 2 n 1 ) ! ( 2 n + 1 ) = 1 2 π n = 1 ( 1 ) n 1 π 2 n + 1 ( 2 n ) ( 2 n ) ( 2 n 1 ) ! ( 2 n + 1 ) = 1 2 π n = 1 ( 1 ) n 1 π 2 n + 1 ( 2 n + 1 1 ) ( 2 n + 1 ) ! = 1 2 π n = 1 ( ( 1 ) n 1 π 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! ( 1 ) n 1 π 2 n + 1 ( 2 n + 1 ) ! ) = 1 2 π n = 1 ( ( π ) ( 1 ) n 1 π 2 n ( 2 n + 1 ) ( 2 n ) ! ( 1 ) n 1 π 2 n + 1 ( 2 n + 1 ) ! ) = π 2 π ( π 2 2 ! π 4 4 ! + π 6 6 ! + ) 1 2 π ( π 3 3 ! π 5 5 ! + π 7 7 ! + ) = 1 2 ( 1 cos π ) 1 2 π ( π sin π ) = 1 1 2 = 1 2 m n \begin{aligned}\text{S} & = \frac{1}{2\pi}\left(\frac{\pi^3}{1!3}-\frac{\pi^5}{3!5}+\frac{\pi}{5!7}+\cdots\right) \\& =\frac{1}{2\pi}\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\pi^{2n+1}}{(2n-1)!(2n+1)} \\& = \frac{1}{2\pi}\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\pi^{2n+1}(2n)}{(2n)(2n-1)!(2n+1)}\\&=\frac{1}{2\pi}\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\pi^{2n+1}(2n+1-1)}{(2n+1)!}\\& =\frac{1}{2\pi} \displaystyle\sum_{n=1}^{\infty}\left(\frac{(-1)^{n-1}\pi^{2n+1}(2n+1)}{(2n+1)!}-\frac{(-1)^{n-1}\pi^{2n+1}}{(2n+1)!}\right)\\&= \frac{1}{2\pi} \displaystyle\sum_{n=1}^{\infty}\left((\pi)\frac{(-1)^{n-1}\pi^{2n}(2n+1)}{(2n)!}-\frac{(-1)^{n-1}\pi^{2n+1}}{(2n+1)!}\right) \\& = \frac{\pi}{2\pi}\left({\color{#3D99F6}\frac{\pi^2}{2!}-\frac{\pi^4}{4!}+\frac{\pi^6}{6!}+\cdots}\right)-\frac{1}{2\pi}\left({\color{#D61F06}\frac{\pi^3}{3!}-\frac{\pi^5}{5!}+\frac{\pi^7}{7!}+\cdots}\right) \\& = \frac{1}{2}(1-\cos{\pi})-\frac{1}{2\pi}(\pi-\sin{\pi}) \\& = 1-\frac{1}{2}\\& = \frac{1}{2}\implies\frac{m}{n} \end{aligned} m n = 2 \implies mn = \boxed{2}

The sum stated in the question and in the solution is not the same

Dinno Koluh - 3 years, 7 months ago

Log in to reply

Thank you ! I have edited the solution. :)

Naren Bhandari - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...