The unusual infinity

Calculus Level 5

lim x x x 2 [ ( x + 1 ) ( x + 1 2 ) ( x + 1 2 2 ) ( x + 1 2 x 1 ) ] x = ? \lim_{x\to\infty} x^{-x^2} \bigg[ (x+1)\left(x+\frac12\right)\left(x+\frac1{2^2} \right)\ldots \left(x + \frac1{2^{x-1}} \right) \bigg]^x = \ ?

Give your answer to 3 decimal places.


The answer is 7.389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Jul 23, 2015

L = l i m x x x 2 [ ( x + 1 ) ( x + 1 2 ) ( x + 1 2 2 ) . . . ( x + 1 2 x 1 ) ] x = l i m x [ ( 1 + 1 x ) ( 1 + 1 2 x ) ( 1 + 1 2 2 x ) . . . ( 1 + 1 2 x 1 x ) ] x = l i m x [ r = 1 r = x ( 1 + 1 2 r 1 x ) ] x = l i m x [ r = 1 r = x ( 1 + 1 2 r 1 x ) x ] l i m x ( 1 + 1 2 r 1 x ) x = e 1 2 r 1 L = l i m x [ r = 1 r = x e 1 2 r 1 ] = l i m x e 1 + 1 2 + 1 2 2 + . . . + 1 2 x 1 = e 1 1 1 2 = e 2 = 7.389 L=\underset { x\rightarrow \infty }{ lim } { x }^{ { -x }^{ 2 } }{ \left[ \left( x+1 \right) \left( x+\cfrac { 1 }{ 2 } \right) \left( x+\cfrac { 1 }{ { 2 }^{ 2 } } \right) ...\left( x+\cfrac { 1 }{ { 2 }^{ x-1 } } \right) \right] }^{ x }\\ \\ =\underset { x\rightarrow \infty }{ lim } { { \left[ \left( 1+\cfrac { 1 }{ x } \right) \left( 1+\cfrac { 1 }{ 2x } \right) \left( 1+\cfrac { 1 }{ { 2 }^{ 2 }x } \right) ...\left( 1+\cfrac { 1 }{ { 2 }^{ x-1 }x } \right) \right] } }^{ x }\\ \\ =\underset { x\rightarrow \infty }{ lim } { \left[ \prod _{ r=1 }^{ r=x }{ \left( 1+\cfrac { 1 }{ { 2 }^{ r-1 }x } \right) } \right] }^{ x }=\underset { x\rightarrow \infty }{ lim } { \left[ \prod _{ r=1 }^{ r=x }{ { \left( 1+\cfrac { 1 }{ { 2 }^{ r-1 }x } \right) }^{ x } } \right] }\\ \\ \because \underset { x\rightarrow \infty }{ lim } { \left( 1+\cfrac { 1 }{ { 2 }^{ r-1 }x } \right) }^{ x }={ e }^{ \cfrac { 1 }{ { 2 }^{ r-1 } } }\\ \\ \therefore L=\underset { x\rightarrow \infty }{ lim } \left[ \prod _{ r=1 }^{ r=x }{ { e }^{ \cfrac { 1 }{ { 2 }^{ r-1 } } } } \right] =\underset { x\rightarrow \infty }{ lim } { e }^{ 1+\cfrac { 1 }{ 2 } +\cfrac { 1 }{ { 2 }^{ 2 } } +...+\cfrac { 1 }{ { 2 }^{ x-1 } } }\\ \\ ={ e }^{ \cfrac { 1 }{ 1-\cfrac { 1 }{ 2 } } }={ e }^{ 2 }=7.389

Unfortunately, this is not true. When x x approaches infinity, x + 1 , x + 1 2 , x + 1 4 , x + 1, x + \frac12, x + \frac14, \ldots are STILL all distinct values. So you have shown that the upper bound is e^2, but you need to prove that the lower bound is e^2 as well. I think Power Mean (QAGH) should help. Then by Squeeze Theorem, we can only conclude that the limit is e^2.

Pi Han Goh - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...