1 2 − 5 2 2 + 5 2 3 2 − 5 3 4 2 + 5 4 5 2 − 5 5 6 2 + ⋯
The sum of the infinite series above is in the form of B A , where A and B are coprime positive integers. Find A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Differentiate ( 1 + x ) − 1 = 1 − x + x 2 − x 3 + x 4 − . . . . → ( 1 + x ) 2 − 1 = − 1 + 2 x − 3 x 2 + 4 x 3 − . . . . Multiply both sides by -x and differentiate again ( 1 + x ) 2 1 − ( 1 + x ) 3 2 x = 1 − 2 2 x + 3 2 x 2 − 4 2 x 3 + . . . . . Put x = 5 1 to get the required summation in RHS equal to the LHS 5 4 2 5 . hence answer 25+54=79.
Problem Loading...
Note Loading...
Set Loading...
S 5 S S + 5 S 5 6 S 2 5 6 S 5 6 S + 2 5 6 S 2 5 3 6 S ⟹ S = 1 2 − 5 2 2 + 5 2 3 2 − 5 3 4 2 + 5 4 5 2 − 5 5 6 2 + ⋯ = 5 1 2 − 5 2 2 2 + 5 3 3 2 − 5 4 4 2 + 5 5 5 2 − 5 6 6 2 + ⋯ = 1 2 − 5 2 2 − 1 2 + 5 2 3 2 − 2 2 − 5 3 4 2 − 3 3 + 5 4 5 2 − 4 2 − 5 5 6 2 − 5 2 + ⋯ = 1 2 − 5 ( 2 − 1 ) ( 2 + 1 ) + 5 2 ( 3 − 2 ) ( 3 + 2 ) − 5 3 ( 4 − 3 ) ( 4 + 3 ) + 5 4 ( 5 − 4 ) ( 5 + 4 ) − 5 5 ( 6 − 5 ) ( 6 + 5 ) + ⋯ = 1 − 5 3 + 5 2 5 − 5 3 7 + 5 4 9 − 5 5 1 1 + ⋯ = 5 1 − 5 2 3 + 5 3 5 − 5 4 7 + 5 5 9 − 5 6 1 1 + ⋯ = 1 − 5 2 + 5 2 2 − 5 3 2 + 5 4 2 − 5 5 2 + ⋯ = 1 − 2 ( 5 1 + 5 3 1 + 5 5 1 + ⋯ ) + 2 ( 5 2 1 + 5 4 1 + 5 6 1 + ⋯ ) = 1 − 2 ( 5 1 − 5 2 1 ) ( 1 + 5 2 1 + 5 4 1 + 5 6 1 + ⋯ ) = 1 − 2 5 8 ( 1 − 2 5 1 1 ) = 3 2 = 3 6 2 5 ⋅ 3 2 = 5 4 2 5
⟹ A + B = 2 5 + 5 4 = 7 9