Infinity and beyond : 2

Calculus Level 4

1 2 2 2 5 + 3 2 5 2 4 2 5 3 + 5 2 5 4 6 2 5 5 + \large 1^2 - \frac {2^2}{5} + \frac {3^2}{5^2} -\frac {4^2}{5^3} + \frac {5^2}{5^4} - \frac {6^2}{5^5} + \cdots

The sum of the infinite series above is in the form of A B \dfrac {A}{B} , where A A and B B are coprime positive integers. Find A + B A+B .


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = 1 2 2 2 5 + 3 2 5 2 4 2 5 3 + 5 2 5 4 6 2 5 5 + S 5 = 1 2 5 2 2 5 2 + 3 2 5 3 4 2 5 4 + 5 2 5 5 6 2 5 6 + S + S 5 = 1 2 2 2 1 2 5 + 3 2 2 2 5 2 4 2 3 3 5 3 + 5 2 4 2 5 4 6 2 5 2 5 5 + 6 S 5 = 1 2 ( 2 1 ) ( 2 + 1 ) 5 + ( 3 2 ) ( 3 + 2 ) 5 2 ( 4 3 ) ( 4 + 3 ) 5 3 + ( 5 4 ) ( 5 + 4 ) 5 4 ( 6 5 ) ( 6 + 5 ) 5 5 + = 1 3 5 + 5 5 2 7 5 3 + 9 5 4 11 5 5 + 6 S 25 = 1 5 3 5 2 + 5 5 3 7 5 4 + 9 5 5 11 5 6 + 6 S 5 + 6 S 25 = 1 2 5 + 2 5 2 2 5 3 + 2 5 4 2 5 5 + 36 25 S = 1 2 ( 1 5 + 1 5 3 + 1 5 5 + ) + 2 ( 1 5 2 + 1 5 4 + 1 5 6 + ) = 1 2 ( 1 5 1 5 2 ) ( 1 + 1 5 2 + 1 5 4 + 1 5 6 + ) = 1 8 25 ( 1 1 1 25 ) = 2 3 S = 25 36 2 3 = 25 54 \begin{aligned} S & = 1^2 - \frac {2^2}{5} + \frac {3^2}{5^2} - \frac {4^2}{5^3} + \frac {5^2}{5^4} - \frac {6^2}{5^5} + \cdots \\ \frac S5 & = \frac {1^2}5 - \frac {2^2}{5^2} + \frac {3^2}{5^3} - \frac {4^2}{5^4} + \frac {5^2}{5^5} - \frac {6^2}{5^6} + \cdots \\ S + \frac S5 & = 1^2 - \frac {2^2-1^2}{5} + \frac {3^2-2^2}{5^2} - \frac {4^2-3^3}{5^3} + \frac {5^2-4^2}{5^4} - \frac {6^2-5^2}{5^5} + \cdots \\ \frac {6S}5 & = 1^2 - \frac {(2-1)(2+1)}{5} + \frac {(3-2)(3+2)}{5^2} - \frac {(4-3)(4+3)}{5^3} + \frac {(5-4)(5+4)}{5^4} - \frac {(6-5)(6+5)}{5^5} + \cdots \\ & = 1 - \frac 3{5} + \frac 5{5^2} - \frac 7{5^3} + \frac 9{5^4} - \frac {11}{5^5} + \cdots \\ \frac {6S}{25} & = \frac 15 - \frac 3{5^2} + \frac 5{5^3} - \frac 7{5^4} + \frac 9{5^5} - \frac {11}{5^6} + \cdots \\ \frac {6S}5 + \frac {6S}{25} & = 1 - \frac 25 + \frac 2{5^2} - \frac 2{5^3} + \frac 2{5^4} - \frac 2{5^5} + \cdots \\ \frac {36}{25}S & = 1 - 2\left(\frac 15 + \frac 1{5^3} + \frac 1{5^5} + \cdots \right) + 2\left(\frac 1{5^2} + \frac 1{5^4} + \frac 1{5^6} + \cdots \right) \\ & = 1 - 2\left(\frac 15 - \frac 1{5^2} \right) \left(1 + \frac 1{5^2} + \frac 1{5^4} + \frac 1{5^6} + \cdots \right) \\ & = 1 -\frac 8{25} \left(\frac 1{1-\frac 1{25}} \right) = \frac 23 \\ \implies S & = \frac {25}{36} \cdot \frac 23 = \frac {25}{54} \end{aligned}

A + B = 25 + 54 = 79 \implies A+B = 25+54 = \boxed{79}

Rajen Kapur
May 8, 2017

Differentiate ( 1 + x ) 1 = 1 x + x 2 x 3 + x 4 . . . . 1 ( 1 + x ) 2 = 1 + 2 x 3 x 2 + 4 x 3 . . . (1+x)^{-1} = 1-x+x^2-x^3+x^4- . . . .\rightarrow \dfrac{-1}{(1+x)^2} = -1 + 2x - 3x^2+4x^3- . . . . Multiply both sides by -x and differentiate again 1 ( 1 + x ) 2 2 x ( 1 + x ) 3 = 1 2 2 x + 3 2 x 2 4 2 x 3 + . . . . \dfrac{1}{(1+x)^2} - \dfrac{2x}{(1+x)^3} = 1-2^2x+3^2x^2-4^2x^3+. . . . . Put x = 1 5 x=\frac{1}{5} to get the required summation in RHS equal to the LHS 25 54 . \frac {25}{54} . hence answer 25+54=79.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...