Infinity and Beyond

Calculus Level 4

n = 1 n ( n + 1 ) 2 n 1 = 2 + 3 + 12 4 + 20 8 + 30 16 + 42 32 + 56 64 + \sum_{n=1}^\infty \dfrac{n(n+1)}{2^{n-1}} = 2+3+\frac{12}{4}+\frac{20}{8}+\frac{30}{16}+\frac{42}{32}+\frac{56}{64}+\cdots

Compute the sum above.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the given sum be S.

S = n = 1 ( n ) ( n + 1 ) 2 n 1 = 1 n 2 + n 2 n 1 S = \displaystyle \sum_{n=1}^{\infty} \dfrac{(n)(n+1)}{2^{n-1}} = \displaystyle \sum_{1}^{\infty} \dfrac{n^{2} + n}{2^{n-1}}

Absolute convergence can be proved using the ratio test, and hence we are free to rearrange the terms.

Let, S 1 = n = 1 n 2 n 1 S_{1} = \displaystyle \sum_{n=1}^{\infty} \dfrac{n}{2^{n-1}}

S 1 = 1 + 2 2 + 3 4 + S_{1} = 1 + \dfrac{2}{2} + \dfrac{3}{4} + \ldots ...(1)

S 1 2 = 1 2 + 2 4 + 3 8 + \dfrac{S_{1}}{2} = \dfrac{1}{2} + \dfrac{2}{4} + \dfrac{3}{8} + \ldots ...(2)
Subtracting (2) from (1),
S 1 2 = 1 + 1 2 + 1 4 + 1 8 \dfrac{S_{1}}{2} = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} \ldots
S 1 = 2 1 1 1 2 = 4 S_{1} = 2\cdot \dfrac{1}{1-\dfrac{1}{2}} = 4


Let S 2 = n = 1 n 2 2 n 1 S_{2} = \displaystyle \sum_{n=1}^{\infty} \dfrac{n^{2}}{2^{n-1}}

S 2 = 1 + 4 2 + 9 4 + S_{2} = 1 + \dfrac{4}{2} + \dfrac{9}{4} + \ldots ..(3)
S 2 2 = 1 2 + 4 4 + 9 8 \dfrac{S_{2}}{2} = \dfrac{1}{2} + \dfrac{4}{4} + \dfrac{9}{8} \ldots ...(4)
Subtracting (4) from (3),
S 2 2 = 1 + 3 2 + 5 4 + \dfrac{S_{2}}{2} = 1 + \dfrac{3}{2} + \dfrac{5}{4} + \ldots ...(5)

S 2 4 = 1 2 + 3 4 + 5 8 + \dfrac{S_{2}}{4} = \dfrac{1}{2} + \dfrac{3}{4} + \dfrac{5}{8} + \ldots ...(6)
Subtracting (6) from (5),
S 4 4 = 1 + 2 2 + 2 4 + 2 8 + \dfrac{S_{4}}{4} = 1 + \dfrac{2}{2} + \dfrac{2}{4} + \dfrac{2}{8} + \ldots
S 4 4 = 1 + 1 1 1 2 = 3 \dfrac{S_{4}}{4} = 1 + \dfrac{1}{1-\dfrac{1}{2}} = 3
S 2 = 4 3 = 12 \therefore S_{2} = 4\cdot 3 = 12
S = S 1 + S 2 = 4 + 12 = 16 S = S_{1} + S_{2} = 4 + 12 = 16

Exactly Same Way

Kushagra Sahni - 5 years, 4 months ago

So awesome just solved it .

Department 8 - 5 years, 4 months ago

Did the same

Aditya Kumar - 5 years, 1 month ago

This is calculus approach

This sum can be rewritten as :

2.1 2 0 + 3.2 2 + 4.3 2 2 + 5.4 2 3 + . . . = n = 0 ( n + 2 ) ( n + 1 ) 2 n = n = 2 n ( n 1 ) 2 n 2 = n = 2 n ( n 1 ) x n 2 \frac{2.1}{2^{0}}+\frac{3.2}{2}+\frac{4.3}{2^{2}}+\frac{5.4}{2^{3}}+... = \sum_{n=0}^{\infty}\frac{(n+2)(n+1)}{2^{n}} = \sum_{n=2}^{\infty}\frac{n(n-1)}{2^{n-2}}=\sum_{n=2}^{\infty}n(n-1)x^{n-2} where x = 1 2 x=\frac{1}{2}

This last series can be summed by differentiating the geometric series twice.

So , for any x < 1 \left | x \right |<1 we have :

f ( x ) = n = 0 x n = 1 1 x f(x)=\sum_{n=0}^{\infty }x^{n}=\frac{1}{1-x}

f ( x ) = n = 0 n x n 1 = 1 ( 1 x ) 2 f'(x)=\sum_{n=0}^{\infty }nx^{n-1}=\frac{1}{(1-x)^{2}}

f ( x ) = n = 0 n ( n 1 ) x n 2 = 2 ( 1 x ) 3 f''(x)=\sum_{n=0}^{\infty }n(n-1)x^{n-2}=\frac{2}{(1-x)^{3}}

Evaluating this last expression at x = 1 / 2 x = 1/2 , and seeing that this is the same as the series we need to sum, we have the sum which is 16.

Asif Mujawar
Feb 10, 2016

I have solved this by using arithmetic optometric sequence twice

Post the solution.

Aditya Kumar - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...