Tetration And Telescoping

Calculus Level 5

x = 2 n = 0 2 n 1 + x 2 n ( 1 ) x \large \sum_{x=2}^\infty \sum_{n=0}^\infty \dfrac{2^n}{1 + x^{2^n}} (-1)^x

The iterated series above has a closed form.

Let this closed form be denoted by ω \omega , submit your answer as 1000 ω \lfloor 1000 \omega \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 693.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aditya Dhawan
Nov 9, 2016

Let

f ( x ) = k = 0 n ( 1 + 1 x 2 k ) k = 0 n ( 1 + 1 x 2 k ) = 1 + x 2 k x 2 k = 1 x 2 k + 1 x 2 n + 1 1 1 x 2 k = x ( 1 x 2 n + 1 ) ) x 2 n + 1 ( 1 x ) f\left( x \right) =\prod _{ k=0 }^{ n }{ \left( 1+\frac { 1 }{ { x }^{ { 2 }^{ k } } } \right) } \\ \prod _{ k=0 }^{ n }{ \left( 1+\frac { 1 }{ { x }^{ { 2 }^{ k } } } \right) } =\frac { \prod { 1+{ x }^{ { 2 }^{ k } } } }{ x^{ \sum { { 2 }^{ k } } } } = \frac { \prod { 1-x^{ { 2 }^{ k+1 } } } }{ { x }^{ { 2 }^{ n+1 }-1 }\prod { 1-{ x }^{ { 2 }^{ k } } } } =\frac { x(1-{ x }^{ { 2 }^{ n+1) } }) }{ { x }^{ { 2 }^{ n+1 } }(1-x) }

Now

ln f ( x ) = k = 0 n ln x 2 k + 1 x 2 k f ( x ) f ( x ) = k = 0 2 k 1 + x 2 k x S n = k = 0 n 2 k 1 + x 2 k = x f ( x ) f ( x ) \ln { f\left( x \right) } =\sum _{ k=0 }^{ n }{ \ln { \frac { { x }^{ { 2 }^{ k } }+1 }{ { x }^{ { 2 }^{ k } } } } } \Rightarrow \frac { f'\left( x \right) }{ f\left( x \right) } =\frac { -\sum _{ k=0 }^{ \infty }{ \frac { { 2 }^{ k } }{ 1+{ x }^{ { 2 }^{ k } } } } }{ x } \\ \Rightarrow { S }_{ n }=\sum _{ k=0 }^{ n }{ \frac { { 2 }^{ k } }{ 1+{ x }^{ { 2 }^{ k } } } } = \frac { -xf'\left( x \right) }{ f\left( x \right) }

If x > 1 \left| x \right| >1 , lim n f ( x ) = x x 1 \displaystyle \lim _{ n \rightarrow \infty }{ f\left( x \right) = \frac { x }{ x-1 } } and lim n f ( x ) = 1 ( x 1 ) 2 \displaystyle \lim _{ n \rightarrow \infty }{ f'\left( x \right) = \frac { -1 }{ { (x-1) }^{ 2 } } }

Therefore

lim n S n = 1 x 1 ω = x = 2 k = 0 2 k 1 + x 2 k ( 1 ) x = x = 2 1 x 1 ( 1 ) x = ln 2 0.6931 1000 ω = 693 \lim _{ n \Rightarrow \infty }{ { S }_{ n } } = \boxed { \frac { 1 }{ x-1 } } \\ \therefore \omega =\sum _{ x=2 }^{ \infty }{ \sum _{ k=0 }^{ \infty }{ \frac { { 2 }^{ k } }{ 1+{ x }^{ { 2 }^{ k } } } { (-1) }^{ x } } } =\sum _{ x=2 }^{ \infty }{ \frac { 1 }{ x-1 } } { (-1) }^{ x }= \boxed { \ln { 2 } } \approx 0.6931\\ \therefore \left\lfloor 1000\omega \right\rfloor = \boxed { 693 }

Great work

Sudhamsh Suraj - 4 years, 7 months ago

Another solution:

First observe that, it is not difficult to prove that n 0 2 n 1 + z 2 n = 1 z 1 \sum_{n\ge 0}\frac{2^n}{1+z^{2^n}}=\frac{1}{z-1} z C \forall z\in \mathbb{C} , such that z > 1 |z|>1 . Thus the given sum is S = x 2 ( 1 ) x x 1 = 1 1 2 + 1 3 + = ln 2 S=\sum_{x\ge 2}\frac{(-1)^x}{x-1}=1-\frac{1}{2}+\frac{1}{3}+\cdots=\ln 2 which gives the answer 1000 ln 2 = 693 {\lfloor1000\ln 2\rfloor}=\boxed{693}

Anubhav Tyagi
Dec 20, 2016

x = 2 n = 0 2 n 1 + x 2 n ( 1 ) x = x = 2 ( 1 ) x ( n = 0 2 n 1 + x 2 n ) = x = 2 ( 1 ) x ( lim n ( 2 0 1 + x 2 0 + 2 1 1 + x 2 1 + 2 2 1 + x 2 2 + + 2 n 1 + x 2 n ) ) = x = 2 ( 1 ) x ( lim n ( 1 1 x + ( 2 0 1 x 2 0 + 2 0 1 + x 2 0 ) + 2 1 1 + x 2 1 + 2 2 1 + x 2 2 + + 2 n 1 + x 2 n ) ) NOTE : 2 k 1 x 2 k + 2 k 1 + x 2 k = 2 k + 1 1 x 2 k + 1 = x = 2 ( 1 ) x ( lim n ( 1 1 x + ( 2 1 1 x 2 1 + 2 1 1 + x 2 1 ) + 2 2 1 + x 2 2 + + 2 n 1 + x 2 n ) ) = x = 2 ( 1 ) x ( lim n ( 1 1 x + 2 n + 1 1 + x 2 n + 1 ) ) = x = 2 ( 1 ) x x 1 = 1 + 1 2 + 1 3 + = 0 1 ( n = 0 ( 1 ) n t n ) d t Apply Sum of infinite GP = 0 1 1 1 + t d t = l n ( 2 ) \begin{aligned} &\large \sum_{x=2}^\infty \sum_{n=0}^\infty \dfrac{2^n}{1 + x^{2^n}} (-1)^x = \large \sum_{x=2}^\infty (-1)^x \Bigg(\sum_{n=0}^\infty \dfrac{2^n}{1 + x^{2^n}}\Bigg) \\ &=\large \sum_{x=2}^\infty (-1)^x \Bigg( \lim_{n\to\infty}\bigg(\dfrac{2^0}{1+x^{2^0}} + \dfrac{2^1}{1+x^{2^1}} + \dfrac{2^2}{1+x^{2^2}}+ \cdots+ \dfrac{2^n}{1+x^{2^n}}\bigg)\Bigg) \\ &=\large \sum_{x=2}^\infty (-1)^x \Bigg( \lim_{n\to\infty}\bigg( -\dfrac{1}{1-x}+\bigg(\dfrac{2^0}{1-x^{2^0}}+\dfrac{2^0}{1+x^{2^0}}\bigg) + \dfrac{2^1}{1+x^{2^1}} + \dfrac{2^2}{1+x^{2^2}}+ \cdots+ \dfrac{2^n}{1+x^{2^n}}\bigg)\Bigg) \\ &\text{NOTE} :\dfrac{2^k}{1-x^{2^k}}+\dfrac{2^k}{1+x^{2^k}} = \dfrac{2^{k+1}}{1-x^{2^{k+1}}} \\ &=\large \sum_{x=2}^\infty (-1)^x \Bigg( \lim_{n\to\infty}\bigg( -\dfrac{1}{1-x}+\bigg(\dfrac{2^1}{1-x^{2^1}}+ \dfrac{2^1}{1+x^{2^1}}\bigg) + \dfrac{2^2}{1+x^{2^2}}+ \cdots+ \dfrac{2^n}{1+x^{2^n}}\bigg)\Bigg) \\ &=\large \sum_{x=2}^\infty (-1)^x \Bigg( \lim_{n\to\infty}\bigg( -\dfrac{1}{1-x} +\dfrac{2^{n+1}}{1+x^{2^{n+1}}}\bigg)\Bigg) \\ &=\large \sum_{x=2}^\infty \dfrac{(-1)^x}{x-1} \\ &= 1 + \dfrac{-1}{2} + \dfrac{1}{3} + \cdots \cdots \\ &=\int_{0}^{1}\bigg(\large \sum_{n=0}^\infty (-1)^n t^n \bigg)dt \\ &\text{Apply Sum of infinite GP} \\ &=\int_{0}^{1}\dfrac{1}{1+t} dt \\ &=ln(2) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...