x = 2 ∑ ∞ n = 0 ∑ ∞ 1 + x 2 n 2 n ( − 1 ) x
The iterated series above has a closed form.
Let this closed form be denoted by ω , submit your answer as ⌊ 1 0 0 0 ω ⌋ .
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great work
Another solution:
First observe that, it is not difficult to prove that n ≥ 0 ∑ 1 + z 2 n 2 n = z − 1 1 ∀ z ∈ C , such that ∣ z ∣ > 1 . Thus the given sum is S = x ≥ 2 ∑ x − 1 ( − 1 ) x = 1 − 2 1 + 3 1 + ⋯ = ln 2 which gives the answer ⌊ 1 0 0 0 ln 2 ⌋ = 6 9 3
x = 2 ∑ ∞ n = 0 ∑ ∞ 1 + x 2 n 2 n ( − 1 ) x = x = 2 ∑ ∞ ( − 1 ) x ( n = 0 ∑ ∞ 1 + x 2 n 2 n ) = x = 2 ∑ ∞ ( − 1 ) x ( n → ∞ lim ( 1 + x 2 0 2 0 + 1 + x 2 1 2 1 + 1 + x 2 2 2 2 + ⋯ + 1 + x 2 n 2 n ) ) = x = 2 ∑ ∞ ( − 1 ) x ( n → ∞ lim ( − 1 − x 1 + ( 1 − x 2 0 2 0 + 1 + x 2 0 2 0 ) + 1 + x 2 1 2 1 + 1 + x 2 2 2 2 + ⋯ + 1 + x 2 n 2 n ) ) NOTE : 1 − x 2 k 2 k + 1 + x 2 k 2 k = 1 − x 2 k + 1 2 k + 1 = x = 2 ∑ ∞ ( − 1 ) x ( n → ∞ lim ( − 1 − x 1 + ( 1 − x 2 1 2 1 + 1 + x 2 1 2 1 ) + 1 + x 2 2 2 2 + ⋯ + 1 + x 2 n 2 n ) ) = x = 2 ∑ ∞ ( − 1 ) x ( n → ∞ lim ( − 1 − x 1 + 1 + x 2 n + 1 2 n + 1 ) ) = x = 2 ∑ ∞ x − 1 ( − 1 ) x = 1 + 2 − 1 + 3 1 + ⋯ ⋯ = ∫ 0 1 ( n = 0 ∑ ∞ ( − 1 ) n t n ) d t Apply Sum of infinite GP = ∫ 0 1 1 + t 1 d t = l n ( 2 )
Problem Loading...
Note Loading...
Set Loading...
Let
f ( x ) = k = 0 ∏ n ( 1 + x 2 k 1 ) k = 0 ∏ n ( 1 + x 2 k 1 ) = x ∑ 2 k ∏ 1 + x 2 k = x 2 n + 1 − 1 ∏ 1 − x 2 k ∏ 1 − x 2 k + 1 = x 2 n + 1 ( 1 − x ) x ( 1 − x 2 n + 1 ) )
Now
ln f ( x ) = k = 0 ∑ n ln x 2 k x 2 k + 1 ⇒ f ( x ) f ′ ( x ) = x − ∑ k = 0 ∞ 1 + x 2 k 2 k ⇒ S n = k = 0 ∑ n 1 + x 2 k 2 k = f ( x ) − x f ′ ( x )
If ∣ x ∣ > 1 , n → ∞ lim f ( x ) = x − 1 x and n → ∞ lim f ′ ( x ) = ( x − 1 ) 2 − 1
Therefore
n ⇒ ∞ lim S n = x − 1 1 ∴ ω = x = 2 ∑ ∞ k = 0 ∑ ∞ 1 + x 2 k 2 k ( − 1 ) x = x = 2 ∑ ∞ x − 1 1 ( − 1 ) x = ln 2 ≈ 0 . 6 9 3 1 ∴ ⌊ 1 0 0 0 ω ⌋ = 6 9 3