Infinity and cosines

Calculus Level 4

If lim n i = 0 n 1 n ( 1 + 4 cos 2 ( i π 2 n ) ) = 1 A \displaystyle \lim_{n\to \infty}\sum_{i=0}^{n} \frac{1}{n\left(1+ 4\cos^{2}\left(\frac{i\pi}{2n}\right)\right)}= \frac{1}{\sqrt{A}} , where A A is a real number.

Find A A .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Amal Hari
Nov 27, 2019

The Riemann sum for 0 π 2 1 1 + 4 cos 2 ( x ) d x = lim n i = 0 n π 2 n ( 1 + 4 cos 2 ( i π 2 n ) ) \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{1+4\cos^{2}\left(x\right)} dx=\displaystyle \lim_{n\to \infty} \sum_{i=0}^{n} \frac{\pi}{2n\left(1+ 4\cos^{2}\left(\frac{i\pi}{2n}\right)\right)}

0 π 2 1 1 + 4 cos 2 ( x ) d x = 0 π 2 sec 2 x sec 2 x + 4 d x \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{1+4\cos^{2}\left(x\right)} dx =\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2} x}{\sec^{2} x +4} dx by factoring out cos 2 x \cos^{2} x

sec 2 x sec 2 x + 4 = sec 2 x 5 + tan 2 x = sec 2 x 5 ( 1 + tan 2 x 5 ) \displaystyle \frac{\sec^{2} x}{\sec^{2} x +4} =\frac{\sec^{2} x}{5+\tan^{2}x}=\frac{\sec^{2} x}{5\left(1+\frac{\tan^{2}x}{5}\right)}

0 π 2 1 1 + 4 cos 2 ( x ) d x = 0 π 2 sec 2 x 5 ( 1 + tan 2 x 5 ) d x \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{1+4\cos^{2}\left(x\right)} dx =\displaystyle \int_{0}^{\frac{\pi}{2}} \frac{\sec^{2} x}{5\left(1+\frac{\tan^{2}x}{5}\right)} dx

0 π 2 1 5 ( 1 + tan 2 x 5 ) sec 2 x d x \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{5\left(1+\frac{\tan^{2}x}{5}\right)} \sec^{2} x dx

sec 2 x d x = d tan x \sec^{2} x dx =d\tan x

0 π 2 1 5 ( 1 + tan 2 x 5 ) d tan x = arctan ( tan x 5 ) 5 0 π 2 = π 2 5 \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{1}{5\left(1+\frac{\tan^{2}x}{5}\right)} d\tan x =\displaystyle \frac{\arctan\left(\frac{\tan x}{\sqrt{5}}\right)}{\sqrt{5}}\Bigg|_{0}^{\frac{\pi}{2}}=\frac{\pi}{2\sqrt{5}}

going back to the Riemann sum:

lim n i = 0 n π 2 n ( 1 + 4 cos 2 ( i π 2 n ) ) = π 2 5 \displaystyle \lim_{n\to \infty} \sum_{i=0}^{n} \frac{\pi}{2n\left(1+ 4\cos^{2}\left(\frac{i\pi}{2n}\right)\right)} =\frac{\pi}{2\sqrt{5}}

factor out π 2 \frac{\pi}{2}

lim n i = 0 n 1 n ( 1 + 4 cos 2 ( i π 2 n ) ) = 1 5 \displaystyle \lim_{n\to \infty} \sum_{i=0}^{n} \frac{1}{n\left(1+ 4\cos^{2}\left(\frac{i\pi}{2n}\right)\right)} =\frac{1}{\sqrt{5}}

L = lim n k = 0 n 1 n ( 1 + 4 cos 2 k π 2 n ) Since cos 2 θ = 2 cos 2 θ 1 = lim n k = 0 n 1 n ( 3 + 2 cos k π n ) By Riemann sums = 0 1 1 3 + 2 cos ( x π ) d x Let u = x π d u = π d x = 1 π 0 π 1 3 + 2 cos u d u Let t = tan u 3 d t = 1 2 sec 2 u 2 d u = 1 π 0 2 5 + t 2 d t = 2 5 π tan 1 t 5 0 = 1 5 \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=0}^n \frac 1{n\left(1+4\cos^2 \frac {k\pi}{2n}\right)} & \small \blue {\text {Since }\cos 2\theta = 2\cos^2 \theta -1} \\ & = \lim_{n \to \infty} \sum_{k=0}^n \frac 1{n\left(3+2\cos \frac {k\pi}n \right)} & \small \blue {\text {By Riemann sums}} \\ & = \int_0^1 \frac 1{3+2\cos (x\pi)} dx & \small \blue {\text{Let }u = x\pi \implies du = \pi \ dx} \\ & = \frac 1\pi \int_0^\pi \frac 1{3+2\cos u} du & \small \blue {\text{Let }t = \tan \frac u3 \implies dt = \frac 12 \sec^2 \frac u2 \ du} \\ & = \frac 1\pi \int_0^\infty \frac 2{5+t^2} dt \\ & = \frac 2{\sqrt 5 \pi} \tan^{-1} \frac t{\sqrt 5} \bigg|_0^\infty \\ & = \frac 1{\sqrt 5} \end{aligned}

Therefore A = 5 A = \boxed 5 .


Reference : Riemann sums

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...