If n → ∞ lim i = 0 ∑ n n ( 1 + 4 cos 2 ( 2 n i π ) ) 1 = A 1 , where A is a real number.
Find A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L = n → ∞ lim k = 0 ∑ n n ( 1 + 4 cos 2 2 n k π ) 1 = n → ∞ lim k = 0 ∑ n n ( 3 + 2 cos n k π ) 1 = ∫ 0 1 3 + 2 cos ( x π ) 1 d x = π 1 ∫ 0 π 3 + 2 cos u 1 d u = π 1 ∫ 0 ∞ 5 + t 2 2 d t = 5 π 2 tan − 1 5 t ∣ ∣ ∣ ∣ 0 ∞ = 5 1 Since cos 2 θ = 2 cos 2 θ − 1 By Riemann sums Let u = x π ⟹ d u = π d x Let t = tan 3 u ⟹ d t = 2 1 sec 2 2 u d u
Therefore A = 5 .
Reference : Riemann sums
Problem Loading...
Note Loading...
Set Loading...
The Riemann sum for ∫ 0 2 π 1 + 4 cos 2 ( x ) 1 d x = n → ∞ lim i = 0 ∑ n 2 n ( 1 + 4 cos 2 ( 2 n i π ) ) π
∫ 0 2 π 1 + 4 cos 2 ( x ) 1 d x = ∫ 0 2 π sec 2 x + 4 sec 2 x d x by factoring out cos 2 x
sec 2 x + 4 sec 2 x = 5 + tan 2 x sec 2 x = 5 ( 1 + 5 tan 2 x ) sec 2 x
∫ 0 2 π 1 + 4 cos 2 ( x ) 1 d x = ∫ 0 2 π 5 ( 1 + 5 tan 2 x ) sec 2 x d x
∫ 0 2 π 5 ( 1 + 5 tan 2 x ) 1 sec 2 x d x
sec 2 x d x = d tan x
∫ 0 2 π 5 ( 1 + 5 tan 2 x ) 1 d tan x = 5 arctan ( 5 tan x ) ∣ ∣ ∣ ∣ ∣ 0 2 π = 2 5 π
going back to the Riemann sum:
n → ∞ lim i = 0 ∑ n 2 n ( 1 + 4 cos 2 ( 2 n i π ) ) π = 2 5 π
factor out 2 π
n → ∞ lim i = 0 ∑ n n ( 1 + 4 cos 2 ( 2 n i π ) ) 1 = 5 1