A Weird Infinity Fractional Sequence ~ Inspired by Sourasish K (Part 2)

1 4 + 3 4 4 + 3 5 4 4 8 + 3 5 7 4 4 8 12 + = \large \dfrac{1}{4} + \dfrac{3}{4 \cdot 4} + \dfrac{3 \cdot 5}{4 \cdot 4 \cdot 8} + \dfrac{3 \cdot 5 \cdot 7 }{4 \cdot 4 \cdot 8 \cdot 12 } + \cdots = \,

  • A. 2 \quad 2
  • B. 1 2 \quad \dfrac{1}{\sqrt{2}}
  • C. 1 2 \quad \dfrac{1}{2}
  • D. 2 2 \quad \dfrac{\sqrt{2}}{2}
  • E. 4 2 \quad \dfrac{4}{2}
  • F. 2 4 \quad \dfrac{2}{4}

Inspiration


Try another problem on my set! Let's Practice
B and D are correct C and F are correct A and E are correct

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Kumar Jain
May 22, 2017

( 1 x ) n = 1 + n x + n ( n + 1 ) 2 ! x 2 + + n ( n + 1 ) ( n + 2 ) ( n + r 1 ) r ! x r + terms (1-x)^{-n}=1+nx+\dfrac{n(n+1)}{2!}x^2+\cdots+\dfrac{n(n+1)(n+2)\cdots (n+r-1)}{r!}x^{r}+\cdots\infty\quad\text{terms}


Substitute x = 1 2 , n = 3 2 \boxed{x=\dfrac12 , n = \dfrac32}

1 + 3 4 + 3 5 4 8 + 3 5 7 4 8 12 + = 2 2 \Rightarrow 1+\dfrac34+\dfrac{3\cdot5}{4\cdot8}+\dfrac{3\cdot5\cdot7}{4\cdot8\cdot12}+\cdots=2\sqrt{2}

Multiplying throughout by 1 4 \dfrac14 ,

1 4 + 3 4 4 + 3 5 4 4 8 + 3 5 7 4 4 8 12 + = 1 2 \Rightarrow \dfrac14+\dfrac3{4\cdot4}+\dfrac{3\cdot5}{4\cdot4\cdot8}+\dfrac{3\cdot5\cdot7}{4\cdot4\cdot8\cdot12}+\cdots = \boxed{\dfrac1{\sqrt{2}}}

I'm not thinking but i just look the option from a-f the same answer is b and d so the answer is b and d are correct(:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...