Infinity limit

Calculus Level 3

Find the limit of lim n ( 1 e + 1 e 2 3 + + 1 e n 1 n ) \lim_{n\to\infty} \left( \frac{1}{\sqrt{e} } +\frac{1}{\sqrt[3]{e^{2}} } +\cdots +\frac{1}{\sqrt[n]{e^{n-1}} } \right)

-\infty \infty 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Micah Wood
Jul 20, 2015

e n 1 n = e n 1 n < n \sqrt[n]{e^{n-1}}=e^{\frac{n-1}n}<n for n > 1 n>1 . Because e n 1 n e^{\frac{n-1}n} has upper bound of e e so for n 3 n\geq3 , it's trivial and we can manually check that it is true for n = 2 n=2 .

So we have 1 e n 1 n = 1 e n 1 n > 1 n \dfrac{1}{\sqrt[n]{e^{n-1}}}=\dfrac{1}{e^{\frac{n-1}n}}>\dfrac1n , hence n = 2 N 1 e n 1 n > n = 2 N 1 n \displaystyle \sum_{n=2}^N \dfrac{1}{e^{\frac{n-1}n}} > \sum_{n=2}^N\dfrac1n If n = 2 1 n \displaystyle \sum_{n=2}^\infty\dfrac1n diverges, then 1 e + 1 e 2 3 + 1 e 3 4 + = n = 2 1 e n 1 n \displaystyle \frac{1}{\sqrt{e} } +\frac{1}{\sqrt[3]{e^{2}} }+\frac{1}{\sqrt[4]{e^{3}} } +\cdots = \sum_{n=2}^\infty\dfrac{1}{e^{\frac{n-1}n}} must also diverges.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...