Infinity infinity

Calculus Level 4

S = n = 1 q n 3 n \large S=\sum_{n=1}^{\infty} \dfrac{q_{n}}{3^{n}}

Let the q n q_{n} be a defined sequence for q 1 = 1 q_{1}=1 , q 2 = 2 q_{2}=2 , q 3 = 3 q_{3}=3 such that it satisfy the recurrence relation q n + 3 = q n + 2 q n + 1 + q n q_{n+3}=q_{n+2}-q_{n+1}+q_{n} for positive integer n n .

Compute S S .


The answer is 0.7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
May 4, 2016

The series is an alternating series in the form:

{ 1 , 2 , 3 , 2 , 1 , 2 , 3 , 2 , 1 , 2 , 3 , 2 , 1... } \{1,2,3,2,1,2,3,2,1,2,3,2,1... \}

Therefore:

S = 1 3 + 2 3 2 + 3 3 3 + 2 3 4 + 1 3 5 + . . . \large \displaystyle S = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \frac{2}{3^4} + \frac{1}{3^5} + ...

Multiplying by 3:

3 S = 1 + 2 3 + 3 3 2 + 2 3 3 + 1 3 4 + . . . \large \displaystyle 3S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{1}{3^4} + ...

Subtracting:

2 S = 1 + 1 3 + 1 3 2 1 3 3 1 3 4 + 1 3 5 + 1 3 6 + . . . \large \displaystyle 2S = 1 + \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} - \frac{1}{3^4} + \frac{1}{3^5} + \frac{1}{3^6} + ...

2 S = 1 + ( 1 3 2 1 3 4 + 1 3 6 . . . ) + ( 1 3 1 3 3 + 1 3 5 . . . ) \large \displaystyle 2S = 1 + (\frac{1}{3^2} - \frac{1}{3^4} + \frac{1}{3^6} - ... ) + (\frac{1}{3} - \frac{1}{3^3} + \frac{1}{3^5} -...)

2 S = 1 + 1 9 1 1 9 + 1 3 1 1 9 \large \displaystyle 2S = 1 + \frac{\frac{1}{9}}{1 - \frac{-1}{9}} + \frac{\frac{1}{3}}{1 - \frac{-1}{9}}

2 S = 1 + 1 10 + 3 10 = 14 10 \large \displaystyle 2S = 1 + \frac{1}{10} + \frac{3}{10} = \frac{14}{10}

S = 7 10 = 0.7 \large \displaystyle S = \frac{7}{10} = \fbox{0.7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...